Skip to main content
Log in

Chemical Analysis of Volatiles Emitted by Pinus sylvestris After Induction by Insect Oviposition

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Gas chromatography – mass spectrometry analyses of the headspace volatiles of Scots pine (Pinus sylvestris) induced by egg deposition of the sawfly Diprion pini were conducted. The odor blend of systemically oviposition-induced pine twigs, attractive for the eulophid egg parasitoid Chrysonotomyia ruforum, was compared to volatiles released by damaged pine twigs (control) that are not attractive for the parasitoid. The mechanical damage inflicted to the control twigs mimicked the damage by a sawfly female prior to egg deposition. The odor blend released by oviposition-induced pine twigs consisted of numerous mono- and sesquiterpenes, which all were also present in the headspace of the artificially damaged control twigs. A quantitative comparison of the volatiles from oviposition-induced twigs and controls revealed that only the amounts of (E)-β-farnesene were significantly higher in the volatile blend of the oviposition-induced twigs. Volatiles from pine twigs treated with jasmonic acid (JA) also attract the egg parasitoid. No qualitative differences were detected when comparing the composition of the headspace of JA-treated pine twigs with the volatile blend of untreated control twigs. JA-treated pine twigs released significantly higher amounts of (E)-β-farnesene. However, the JA treatment induced a significant increase of the amount of further terpenoid components. The release of terpenoids by pine after wounding, egg deposition, and JA treatment is discussed with special respect to (E)-β-farnesene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R. P. 1995. Identification of Essential Oil—Components by Gas Chromatography/Mass Spectroscopy. Allured, Carol Stream, Illinois.

  • Aducci, P. 1997. Signal Transduction in Plants. Molecular and Cell Biology Updates. Birkhäuser, Basel, Switzerland.

    Google Scholar 

  • Agrawal, A. A., Tuzun, S., and Bent, E. 1999. Induced Plant Defenses Against Pathogens and Herbivores. Biochemistry, Ecology, and Agriculture. APS Press, St. Paul, Minnesota.

    Google Scholar 

  • Al Abassi, S., Birkett, M. A., Petterson, J., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 2000. Response of the seven-spot ladybird to an aphid alarm pheromone and an alarm pheromone inhibitor mediated by paired olfactory cells. J. Chem. Ecol. 26:1765–1771.

    Google Scholar 

  • Baldwin, I. T. 1994. Chemical changes rapidly induced by folivory, pp. 1-23, in E. A. Bernays (ed.). Insect–Plant Interactions, Vol. 5. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Barnola, L. F., Hasegawa, M., and Cedono, A. 1994. Mono-and sesquiterpene variation in Pinus caribaea needles and its relationship to Atta laevigata herbivory. Biochem. Syst. Ecol. 22:437–445.

    Google Scholar 

  • Baser, K. H. C., Demirci, B., and Kirimer, N. 2002. Compositions of the essential oils of four Helichrysum species from Madagascar. J. Essent. Oil Res. 14:53–55.

    Google Scholar 

  • Beale, M. H. and Ward, J. L. 1998. Jasmonates: Key players in plant defence. Nat. Prod. Rep. 6:533–547.

    Google Scholar 

  • Bengtsson, M., Backman, A. C., Liblikas, I., Ramirez, M. I., Borg-Karlson, A. K., Ansebo, L., Anderson, P., Loefqvist, J., and Witzgall, P. 2001. Plant odor analysis of apple: Antennal response of codling moth females to apple volatiles during phenological development. J. Agric. Food Chem. 49:3731–3736.

    Google Scholar 

  • Bohlmann, J., Crock, J., Jetter, R., and Croteau, R. 1998. Terpenoid-based defences in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-α-bisabolene synthase from grand fir (Abies grandis). Proc. Natl. Acad. Sci. USA. 5:6756–6761.

    Google Scholar 

  • Boland, W., Hopke, J., Donath, J., Nüske, J., and Bublitz, F. 1995. Jasmonic acid and coronatine induce odor production in plants. Angew. Chem. Int. Ed. Engl. 34:1600–1602.

    Google Scholar 

  • Boland, W., Koch, T., Krumm, T., Piel, J., and Jux, A. 1999. Induced biosynthesis of insect semiochemicals in plants, pp. 110-126, in D. J. Chadwick and J. A. Goode (Eds.). Insect–Plant Interactions and Induced Plant Defence. Novartis Foundation Symposium 223. Wiley, Chicester, England.

    Google Scholar 

  • Bolter, C. J., Dicke, M., van Loon, J. J. A., Visser, J. H., and Posthumus, M. A. 1997. Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. J. Chem. Ecol. 23:1003–1023.

    Google Scholar 

  • Bombosch, S. and Ramakers, P. M. J. 1976. Zur Dauerzucht von Gilpinia hercyniae Htg. Z. Pflanzenkrank. Pflanzenschutz 83:40–44.

    Google Scholar 

  • Borg-Karlson, A.-K., Lindström, M., Norin, T., Persson, M., and Valterová, I. 1993. Enantiomeric composition of monoterpene hydrocarbons in different tissues of Norway spruce, Picea abies (L.) Karst. A multi-dimensional gas chromatography study. Acta Chem. Scand. 47:138–144.

    Google Scholar 

  • Chen, Z., Kolb, T. E., and Clancy, K. M. 2002. The role of monoterpenes in resistance of Douglas fir to western spruce budworm defoliation. J. Chem. Ecol. 28:897–920.

    Google Scholar 

  • Creelman, R. A. and Mullet, J. E. 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:355–381.

    Google Scholar 

  • De Moraes, C. M., Lewis, W. J., Paré, P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573.

    Google Scholar 

  • Dicke, M. 1994. Local and systemic production of volatile herbivore-induced terpenoids: Their role in plant–carnivore mutualism. J. Plant Physiol. 143:465–472.

    Google Scholar 

  • Dicke, M. 1999. Evolution of induced indirect defence of plants, pp. 62-88, in R. Tollrian and C. D. Harvell (Eds.). The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Dicke, M., Gols, R., Ludeking, D., and Posthumus, M. A. 1999. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. J. Chem. Ecol. 25:1907–1922.

    Google Scholar 

  • Dicke, M., Van Beek, T. A., Posthumus, M. A., Ben Dom, N., Van Bokhoven, H., and De Groot, A. E. 1990. Isolation and identification of volatile kairomone that affects acarine predator–prey interactions. J. Chem. Ecol. 16:381–396.

    Google Scholar 

  • Dicke, M. and van Loon, J. J. A. 2000. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol. Exp. Appl. 97:237–249.

    Google Scholar 

  • Dicke, M. and Vet, L. E. M. 1999. Plant–carnivore interactions: Evolutionary and ecological consequences for plant, herbivore and carnivore, pp. 483-520, in H., Olff, V. K., Brown, and R. H. Drent (Eds.). Herbivores Between Plants and Predators. Blackwell Science, Oxford.

    Google Scholar 

  • Du, Y., Poppy, G. M., Powell, W., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1998. Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J. Chem. Ecol. 24:1355–1369.

    Google Scholar 

  • Duffey, S. S. and Stout, M. J. 1996. Antinutritive and toxic components of plant defense against insects. Arch. Insect Biochem. Physiol. 32:3–37.

    Google Scholar 

  • Edwards, P. J. and Wratten, S. D. 1987. Ecological significance of wound induced changes in plant chemistry, pp. 213-219, in V., Labeyrie, G., Fabres, and D. Lachaise (Eds.). Insects–Plants: Proceedings of 6th International Symposium on Insect–Plant Relationships. Dr. W. Junk, The Hague.

    Google Scholar 

  • Eichhorn, O. 1976. Dauerzucht von Diprion pini L. (Hym.: Diprionidae) im Laboratorium unter Berücksichtigung der Fotoperiode. Anz. Schädlingskde. Pflanzenschutz Umweltschutz 49:38–41.

    Google Scholar 

  • Fäldt, J., Martin, D., Miller, B., Rawat, S., and Bohlmann, J. 2003. Traumatic resin defense in Norway spruce (Picea abies): Methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Mol. Biol. 51:119–133.

    Google Scholar 

  • Fäldt, J., Sjödin, K., Persson, M., Valterova, I., and Borg-Karlson, A. K. 2001. Correlations between selected monoterpene hydrocarbons in the xylem of six Pinus (Pinaceae) species. Chemoecology 11:97–106.

    Google Scholar 

  • Franceschi, V. R., Krekling, T., and Chrisitansen, E. 2002. Application of methyl jasmonate on Picea abies (Pinaceae) stems induces defense-related responses in phloem and xylem. Am. J. Bot. 89:578-586

    Google Scholar 

  • Fugmann, B., Lang-Fugmann, S., and Steglich, W. 1997. Römpp-Lexikon Naturstoffe. Georg Thieme, Stuttgart, Germany.

    Google Scholar 

  • Gershenzon, J. and Croteau, R. 1991. Terpenoids, pp. 165-219, in G. A. Rosenthal and M. R. Berenbaum (Eds.). Herbivores. Their Interactions with Secondary Plant Metabolites, Vol. 1. The Chemical Participants, Academic Press, New York.

    Google Scholar 

  • Gijzen, M., Lewinsohn, E., Savage, T. J., and Croteau, R. B. 1993. Conifer Monoterpenes, pp. 8-22, in R., Teranishi, R. G., Buttery, and H. Sugisawa (Eds.). Bioactive Volatile Compounds from Plants. ACS Symposium Series 525, Washington, DC.

    Google Scholar 

  • Gols, R., Posthumus, M. A., and Dicke, M. 1999. Jasmonic acid induces the production of gerbera volatiles that attract the biological control agent Phytoseiulus persimilis. Entomol. Exp. Appl. 93:77–86.

    Google Scholar 

  • Hilker, M., Kobs, C., Varama, M., and Schrank, K., 2002a. Insect egg deposition induces Pinus to attract egg parasitoids. J. Exp. Biol. 205:455–461.

    Google Scholar 

  • Hilker, M., Rohfritsch, O., and Meiners, T., 2002b. The plant's response towards insect egg deposition, pp. 205-234, in M. Hilker and T. Meiners (Eds.). Chemoecology of Insect Eggs and Egg Deposition. Blackwell, Berlin.

    Google Scholar 

  • Hilker, M. and Meiners, T. 2002. Induction of plant responses towards oviposition and feeding of herbivorous arthropods: A comparison. Entomol. Exp. Appl. 104:181–192.

    Google Scholar 

  • Honkanen, T., Haukioja, E., and Kitunen, V. 1999. Responses of Pinus sylvestris branches to simulated herbivory are modified by tree sink/source dynamics and by external resources. Funct. Ecol. 13:126–140.

    Google Scholar 

  • Hopke, J., Donath, J., Blechert, S., and Boland, W. 1994. Herbivore-induced volatiles: The emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a β-glucosidase and jasmonic acid. FEBS Lett. 352:146–150.

    Google Scholar 

  • Joulain, D. and König, W. A. 1998. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons. E.-B. Verlag, Hamburg, Germany.

    Google Scholar 

  • Karban, R. and Baldwin, I. T. 1997. Induced Responses to Herbivory. The University Press of Chicago, Chicago, Illinois.

    Google Scholar 

  • Kaukinen, K. H., Tranbarger, T. J., and Misra, S. 1996. Post germination induced and hormonally dependent expression of low molecular weight heat shock protein genes in Douglas fir. Plant Mol. Biol. 30:1115–1128.

    Google Scholar 

  • Kessler, A. and Baldwin, I. T. 2002. Plant responses to insect herbivory: The emerging molecular analysis. Annu. Rev. Plant Biol. 53:299–328.

    Google Scholar 

  • Koch, T., Krumm, T., Jung, V., Engelberth, J., and Boland, W. 1999. Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates of the octadecanoid-signaling pathway. Plant Physiol. 121:153–162.

    Google Scholar 

  • König, W. A., Krüger, A., Icheln, D., and Runge, T. 1992. Enantiomeric composition of the chiral constituents in essential oils. J. High Resol. Chromatogr. 15:184–189.

    Google Scholar 

  • Langenheim, J. H. 1994. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 20:1223–1280.

    Google Scholar 

  • Latta, R. G., Linhart, Y. B., Lundquist, L., and Snyder, M. A. 2000. Patterns of monoterpene variation within individual trees in ponderosa pine. J. Chem. Ecol. 26:1341–1357.

    Google Scholar 

  • Litvak, M. E. and Monson, R. K. 1998. Patterns of induced and constitutive monoterpene production in conifer needles in relation to insect herbivory. Oecologia 114:531–540.

    Google Scholar 

  • Lombardero, M. J., Ayres, M. P., Lorio, P. L., Jr., and Ruel, J. J. 2000. Environmental effects on constitutive and inducible resin defences in Pinus taeda. Ecol. Lett. 3:329–339.

    Google Scholar 

  • Manninen, A. M., Tarhanen, S., Vuorinen, M., and Kainulainen, P. 2002. Comparing the variation of needle and wood terpenoids in scots pine provenances. J. Chem. Ecol. 28:211–228.

    Google Scholar 

  • Martin, D., Tholl, D., Gershenzon, J., and bohlmann, J. 2002. Methyl jasmonate induces traumatic resin ducts, terpenoid resins biosynthesis, and terpenoid accumulation in developing xylem of Norway Spruce stems. Plant Physiol. 129:1003–1018.

    Google Scholar 

  • McAuslane, H. J. and Alborn, H. T. 1998. Systemic induction of allelochemicals in glanded and glandless isogenic cotton by Spodoptera exigua feeding. J. Chem. Ecol. 24:399–416.

    Google Scholar 

  • Meiners, T. and Hilker, M. 1997. Host location in Oomyzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogaluruca luteola (Coleoptera: Chrysomelidae). Oecologia 112:87–93.

    Google Scholar 

  • Meiners, T. and Hilker, M. 2000. Induction of plant synomones by oviposition of a phytophagous insect. J. Chem. Ecol. 26:221–232.

    Google Scholar 

  • Micha, S. G. and Wyss, U. 1996. Aphid alarm pheromone (E)-β-farnesene: A host findung kairomone for the aphid primary parasitoid Aphidius uzbekistanicus (Hymenoptera: Aphidiinae). Chemoecology 7:132–139.

    Google Scholar 

  • Moore, G. E. and Clark, E. W. 1968. Suppressing microorganisms and maintaining turgidity in coniferous foliage used to rear insects in the laboratory. J. Econ. Entomol. 61:1030–1031.

    Google Scholar 

  • Nault, L. R., Edwards, L. J., and Styer, W. E. 1973. Aphid alarm pheromones: Secretion and reception. Environ. Entomol. 2:101–105.

    Google Scholar 

  • Nebeker, T. E., Schmitz, R. F., and Tisdale, R. A. 1995. Comparison of oleoresin flow in relation to wound size, growth rates, and disease status of lodgepole pine. Can. J. Bot. 73:370–375.

    Google Scholar 

  • Oven, P. and Torelli, N. 1999. Response of the cambial zone in conifers to wounding. Phyton 39:133–137.

    Google Scholar 

  • Ozawa, R., Arimura, G., Takabayashi, J., Shimoda, T., and Nishioka, T. 2000. Involvement of jasmonate-and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol. 41:391–398.

    Google Scholar 

  • Paré, P. W., Lewis, W. J., and Tumlinson, J. H. 1999. Induced plant volatiles: Biochemistry and effects on parasitoids, pp. 167-180, in A. A., Agrawal, S., Tuzun, and E. Bent (Eds.). Induced Plant Defenses Against Pathogenes and Herbivores. APS Press, St. Paul, Minnesota.

    Google Scholar 

  • Paré, P. W. and Tumlinson, J. H. 1997. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 114:1161–1167.

    Google Scholar 

  • Petrakis, P. V., Tsitsimpikou, C., Tzakou, O., Couladis, M., Vagias, C., and Roussis, V. 2001. Needle volatiles from Pinus species growing in Greece. Flavour Fragr. J. 16:249–252.

    Google Scholar 

  • Phillips, M. A., Savage, T. J., and Croteau, R. 1999. Monoterpene synthases of loblolly pine (Pinus taeda) produce pinene isomers and enantiomers. Arch. Biochem. Biophys. 372:197–204.

    Google Scholar 

  • Popp, M. P., Johnson, J. D., and Lesney, M. S. 1995. Characterization of the induced response of slash pine to inoculation with bark beetle vectored fungus. Tree Physiol. 15:619–623.

    Google Scholar 

  • Price, P. W. 1986. Ecological aspects of host plant resistance and biological control: Interactions among three trophic levels, pp. 11-30, in D. J. Boethel and R. D. Eikenbary (Eds.). Interactions of Plant Resistance and Parasitoids and Predators of Insects. Ellis Hoerwood, Chichester, England.

    Google Scholar 

  • Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N., and Weis, A. E. 1980. Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11:41–65.

    Google Scholar 

  • Raffa, K. F. and Smalley, E. B. 1995. Interaction of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle–fungal complexes. Oecologia 102:285–295.

    Google Scholar 

  • Richard, S., Drevet, C., Jouanin, L., and Sequin, A. 1999. Isolation and characterization of a cDNA clone encoding a putative white spruce glycine-rich RNA binding protein. Gene 240:379–388.

    Google Scholar 

  • Richard, S., Lapointe, G., Rutledge, R. G., and Seguin, A. 2000. Induction of chalcone synthase in white spruce by wounding and jasmonate. Plant Cell Physiol. 41:982–987.

    Google Scholar 

  • Rodriguez-Saona, C., Crafts-Brandner, S. J., Paré, P. W., and Henneberry, T. J. 2001. Exogenous methyl jasmonate induces volatile emissions in cotton plants. J. Chem. Ecol. 27:679–695.

    Google Scholar 

  • Röse, U. S. R., Lewis, W. J., and Tumlinson, J. H. 1998. Specificity of systemically released cotton volatiles as attractants for specialist and generalist parasitic wasps. J. Chem. Ecol. 24:303–319.

    Google Scholar 

  • Sadof, C. S. and Grant, G. G. 1997. Monoterpene composition of Pinus sylvestris varieties resistant and susceptible to Dioryctria zimmermani. J. Chem. Ecol. 23:1917–1927.

    Google Scholar 

  • Schmelz, E. A., Alborn, H. T., and Tumlinson, J. H. 2001. The influence of intact-plant and excised-leaf bioassay designs on volicitin-and jasmonic acid-induced sesquiterpene volatile release in Zea mays. Planta 214:171–179.

    Google Scholar 

  • Sembdner, G. and Parthier, B. 1993. The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:569–589.

    Google Scholar 

  • Sjödin, K., Persson, M., Borg-Karlson, A.-K., and Norin, T. 1996. Enantiomeric compositions of monoterpene hydrocarbons in different tissues of four individuals of Pinus sylvestris. Phytochemistry 41:439–445.

    Google Scholar 

  • Staswick, P. E. and Lehman, C. C. 1999. Jasmonic acid-signaled responses in plants, pp. 117-136, in A. A., Agrawal, S., Tuzun, and E. Bent (Eds.). Induced Plant Defenses Against Pathogens and Herbivores. APS Press, St. Paul, Minnesota.

    Google Scholar 

  • Steele, C. L., Katoh, S., Bohlmann, J., and Croteau, R. 1998. Regulation of oleoresinosis in grand fir (Abies grandis). Plant Physiol. 116:1497–1504.

    Google Scholar 

  • Stout, M. J. and Bostock R. M. 1999. Specificity of induced responses to arthropods and pathogens, pp. 183-211, in A. A., Agrawal, S., Tuzun, and E. Bent (Eds.). Induced Defenses Against Pathogens and Herbivores. APS Press, St. Paul, Minnesota.

    Google Scholar 

  • Takabayashi, J., Dicke, M., and Posthumus, M. A. 1994. Volatile herbivore-induced terpenoids in plant–mite interactions: Variation caused by biotic and abiotic factors. J. Chem. Ecol. 20:1329–1354.

    Google Scholar 

  • Takabayashi, J., Takahashi, S., Dicke, M., and Posthumus, M. A. 1995. Developmental stage of herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plants. J. Chem. Ecol. 21:273–287.

    Google Scholar 

  • Teuscher, E. and Lindequist, U. 1994. Biogene Gifte. Gustav Fischer, Stuttgart, Germany.

    Google Scholar 

  • Thaler, J. S. 1999. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686–688.

    Google Scholar 

  • Tomlin, E. S., Alfaro, R. I., Borden, J. H., and He, F. 1998. Histological response of resistant and susceptible white spruce to simulated white pine weevil damage. Tree Physiol. 18:21–28.

    Google Scholar 

  • Trapp, S. and Croteau, R. 2001. Defensive resin biosynthesis in conifers. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:689–724.

    Google Scholar 

  • Turlings, T. C. J., McCall, P. J., Alborn, H. T., and Tumlinson, J. H. 1993. An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. J. Chem. Ecol. 19:411–425.

    Google Scholar 

  • Turlings, T. C. J., Tumlinson, J. H., Heath, R. R., Proveaux, A. T., and Doolittle, R. E. 1991. Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J. Chem. Ecol. 17:2235–2251.

    Google Scholar 

  • Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253.

    Google Scholar 

  • van den Dool, J. and Kratz, P. D. 1963. A generalization of the retention index system including linear programmed gas–liquid partition chromatography. J. Chromatogr. 11:463.

    Google Scholar 

  • van Dort, H. M., Jagers, P. P., ter Heide, R., and van der Weerdt, A. J. A. 1993. Narcissus trevithian and Narcissus geranium: Analysis and synthesis of compounds. J. Agric. Food Chem. 41:2063–2075.

    Google Scholar 

  • Walling, L. L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19:195–216.

    Google Scholar 

  • Watt, A. D., Leather, S. R., and Forrest, G. I. 1991. The effect of previous defoliation of pole-stage lodgepole pine on plant chemistry, and on the growth and survival of pine beauty moth (Panolis flammea) larvae. Oecologia 86:31–35.

    Google Scholar 

  • Wegener, R., Schulz, S., Meiners, T., Hadwich, K., and Hilker, M. 2001. Analysis of volatiles induced by oviposition of elm leaf beetle Xanthogaleruca luteola on Ulmus minor. J. Chem. Ecol. 27:499–515.

    Google Scholar 

  • Weissbecker, B., van Loon, J. J. A., Posthumus, M. A., Bouwmeester, H. J., and Dicke, M. 2000. Identification of volatile potato sesquiterpenoids and their olfactory detection by the two-spotted stinkbug Perillus bioculatus. J. Chem. Ecol. 26:1433–1445.

    Google Scholar 

  • Zhu, J., Cossé, A. A., Obrycki, J. J., Boo, K. S., and Baker, T. C. 1999. Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea, to semiochemicals released from their prey and host plant: Electroantennogram and behavioral responses. J. Chem. Ecol. 25:1163–1177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Hilker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mumm, R., Schrank, K., Wegener, R. et al. Chemical Analysis of Volatiles Emitted by Pinus sylvestris After Induction by Insect Oviposition. J Chem Ecol 29, 1235–1252 (2003). https://doi.org/10.1023/A:1023841909199

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023841909199

Navigation