Skip to main content
Log in

Allelopathic Potential of Macaranga tanarius (L.) Muell.–Arg.

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Macaranga tanarius is widely distributed in the abandoned lowlands of Taiwan where substantial amounts of leaves accumulate on the ground. A unique pattern of weed exclusion underneath trees is often found and thought to result from allelopathic interactions. Density-dependent phytotoxicity analysis of Lactuca sativa L. (lettuce) growing in soil mixed with the powder of M. tanarius leaves showed a significant deviation from the expected yield–density relationship. Lettuce growth was most suppressed in the low seed density experiment suggesting that the phytotoxins produced during leaf decomposition inhibit the growth of lettuce seedlings. Bidens pilosa and Leucaena leucocephala, growing in soil mixed with the leaf powder of M. tanarius were also suppressed. Aqueous leaf extracts were bioassayed against lettuce and B. pilosa, and exhibited a significant suppression in radicle growth. Compounds identified from leaves included nymphaeol-A (1), nymphaeol-B (2), nymphaeol-C (3), quercetin (4), abscisic acid (ABA) (5), blumenol A (6), blumenol B (7), roseoside II (8), tanariflavanone A (9), and tanariflavanone B (10). ABA was the major growth inhibitor. At concentrations of 20 ppm, ABA suppressed lettuce germination, while at 120 ppm it inhibited the growth of Miscanthus floridulus, Chloris barbata, and Bidens pilosa. At 600 ppm, quercetin, blumenol A, and blumenol B, caused 20–25% inhibition of radicle and shoot growth of M. floridulus. The amount of ABA in M. tanarius leaves was approximately 3–5 μg g−1 dry weight, significantly higher than previously reported. We conclude that the pattern of weed exclusion underneath stands of M. tanarius and its invasion into its adjacent grassland vegetation results from allelopathic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhakuni, D. S., Joshi, P. P., Uprety, H., and Kapil, R. S. 1974. Roseoside—A C13 glycoside from Vinca rosea. Phytochemistry 13:2541–2543.

    Google Scholar 

  • Boardman, N. K. 1977. Comparative photosynthesis of sun and shade plants. Annu. Rev. Plant Physiol. 28:355–377.

    Google Scholar 

  • Buta, J. G. and Spaulding, D. W. 1989. Allelochemicals in tall fescue— abscisic and phenolic acids. J. Chem. Ecol. 15:1629–1636.

    Google Scholar 

  • Chaves, N., Sosa, T., Alías, J. C., and Escudero, J. C. 2001. Identification and effects of interaction phytotoxic compounds from exudate of Cistus ladanifer leaves. J. Chem. Ecol. 27:611–621.

    Google Scholar 

  • Chou, C. H. 1999a. Roles of allelopathy in plant biodiversity and sustainable agriculture. Crit. Rev. Plant Sci. 18:609–636.

    Google Scholar 

  • Chou, C. H. 1999b. Methodologies for allelopathic research: From fields to laboratory, pp. 3-24, in A. M. Macías, J. C. G. Galindo J. M. G. Molinillo, and H. G. Cutler (Eds.). Recent Advances in Allelopathy, Vol. I: A Science for the Future. International Allelopathy Society. Servicio De Publicaciones Universidad de Càdiz, Spain.

    Google Scholar 

  • Chou, C. H., Fu, C. Y., Li, S. Y., and Wang, Y. F. 1998. Allelopathic potential of Acacia confusa and related species in Taiwan. J. Chem. Ecol. 24:2131–2150.

    Google Scholar 

  • Chou, C. H. and Leu, L. L. 1992. Allelopathic substances and interactions of Delonix regix (Boj. Raf.). J. Chem. Ecol. 18:2285–2303.

    Google Scholar 

  • Chou, C. H. and Muller, C. H. 1972. Allelopathic mechanism of Arctostaphylos glandulosa var. zacaensis. Am. Midl. Nat. 88:324–347.

    Google Scholar 

  • Chou, C. H. and Young, C. C. 1974. Effect of osmotic concentration and pH on plant growth. Taiwania 19:157–165.

    Google Scholar 

  • Constantino, M. G., Losco, P., and Castellano, E. E. 1989. A novel synthesis of (±)-abscisic acid. J. Org. Chem. 54:681–683.

    Google Scholar 

  • Galbraith, M. N. and Horn, D. H. S. 1972. Structures of the natural products blumenols A, B, and C. J. Chem. Soc. Chem. Comm. 3:113–114.

    Google Scholar 

  • Gomez, K. A. and Gomez, A. A. 1976. Statistical Procedures for Agricultural Research with Emphasis on Rice. The International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  • Hall, K. C., Chapman, S. J., Christean, D. G., and Jackson, M. B. 1986. Abscisic acid in straw residues from autumn-sown wheat. J. Sci. Food Agric. 37:219–222.

    Google Scholar 

  • Hoffman, D. W. and Lavy, T. L. 1978. Plant competition for atrazine. Weed Sci. 26:94–99.

    Google Scholar 

  • Kira, T., Ogawa, H., and Sakazaki, N. 1953. Intraspecific competition among higher plants. I: Competition–density yield interrelationship in regularly dispersed populations. J. Inst. Polytechn. Osaka City Univ. D 4:1–6.

    Google Scholar 

  • Leung, J. and Giraudat, J. 1998. Abscisic acid signal transduction. Annu. Rev. Plant Pysiol. Plant Mol. Biol. 49:199–222.

    Google Scholar 

  • Lin, Y. L., Wang, W. Y., Kuo, Y. H., and Chen, C. F. 2000. Nonsteroidal constituents from Solanum incanum L. J. Chin. Chem. Soc. 47:247–251.

    Google Scholar 

  • Mallik, A. U. and Pellissier, F. 2000. Effects of Vaccinium myrtillus on spruce regeneration: Testing the notion of coevolutionary significance of allelopahy. J. Chem. Ecol. 26:2197–2209.

    Google Scholar 

  • Muller, C. H. 1969. Allelopathy as a factor in ecological process. Vegetatio 18:348–357.

    Google Scholar 

  • Ohkuma, K., Addicott, F. T., Smith, O. E., and Thiessen, W. E. 1965. The structure of abscisin II. Tetrahedron Lett. 29:2529–2535.

    Google Scholar 

  • Otsuka, H., Yao, M., Kamada, K., and Takeda, Y. 1995. Alangionosides G-M: Glycosides of megastigmane derivatives from the leaves of Alangium premnifolium. Chem. Pharm. Bull. 43:754–759.

    Google Scholar 

  • Putnam, A. R. and Tang, C. S. 1986. The Science of Allelopathy. Wiley, New York.

    Google Scholar 

  • Rice, E. L. 1984. Allelopathy. Academic Press, Orlando, Florida.

    Google Scholar 

  • Skipper, H. D. 1966. Microbial degradation of atrazine in soils. MS Thesis, Oregon State University.

  • Tseng, M. H. 2001. Allelopathic potential of Macaranga tanarius (L.) Muell.-Arg. PhD dissertation, National Taiwan University, Taiwan.

    Google Scholar 

  • Tseng, M. H., Chou, C. H., Chen, Y. M., and Kuo, Y. H. 2001. Allelopathic prenylflavanones from the fallen leaves of Macaranga tanarius. J. Nat. Prod. 64:827–828.

    Google Scholar 

  • Weidenhamer, J. D., Hartnett, D. C., and Romeo, J. T. 1989. Density-dependent phytotoxicity: Distinguishing resource competition and allelopathic interference in plants. J. Appl. Ecol. 26:613–624.

    Google Scholar 

  • Weidenhamer, J. D., Morton, T. C., and Romeo, J. T. 1987. Solution volume and seed number: Often overlooked factors in allelopathic bioassays. J. Chem. Ecol. 13:1481–1491.

    Google Scholar 

  • Winkle, M. E., Leavitt, J. R. C., and Burnside, O. C. 1981. Effects of weed density on herbicide absorption and bioactivity. Weed Sci. 29:405–409.

    Google Scholar 

  • Yakushijin, K., Shibayama, K., Murata, H., and Furukawa, H. 1980. New prenylflavanones from Hernandia nymphaefolia (Presl) Kubitzki. Heterocycles 14:397–402.

    Google Scholar 

  • Zeevaart, J. A. D. and Creelman, R. A. 1988. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:439–473.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hung Chou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, MH., Kuo, YH., Chen, YM. et al. Allelopathic Potential of Macaranga tanarius (L.) Muell.–Arg.. J Chem Ecol 29, 1269–1286 (2003). https://doi.org/10.1023/A:1023846010108

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023846010108

Navigation