Skip to main content
Log in

Fluid Regulation and Physiological Adjustments in the Winter Skate, Leucoraja ocellata, Following Exposure to Reduced Environmental Salinities

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Winter skates, Leucoraja ocellata, exposed to 80% and 50% seawater (SW) exhibited rapid and significant weight gains followed by a slight recovery to new steady state levels within 8 days. Skates were acclimated at each salinity (100% SW [N = 16], 80% SW [N = 8], 50% SW [N = 8]), anesthetized (MS222) and bled from the caudal vein. In 100% SW, skate plasma (930 mOsm/kg) was slightly hyperosmotic to the external medium (922 mOsm/kg). Plasma osmolality decreased with seawater dilution, but became increasingly hyperosmotic to the bathing media. The environmental dilutions resulted in significant, but disproportionate changes in plasma Cl, P, Na+, Ca+, Mg+, trimethylamine oxide (TMAO) and urea concentrations. Mean corpuscular [Hb] and milliliter RBC water measurements suggest that skate red cells swelled less at each dilution than predicted for a passive erythrocyte osmometer. Concentrations of the major RBC solutes K+, urea, TMAO and Cl decreased by 8, 25, 5 and 21%, respectively in 80% SW. In 50% SW, K+, urea, TMAO and Cl concentrations decreased by 9, 47, 36 and 15%, respectively. Quantitatively, the other measured intracellular electrolytes (Mg+, Na+, P and Ca+) also exhibited disproportionate changes in concentration. Our results indicate that L. ocellata is a euryhaline elasmobranch that can tolerate significant reduction in the external salinity through the release of both ions and urea from the extracellular compartments while retaining electrolytes at the expense of urea in the intracellular compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Bigelow, H.B. & W.C. Schroeder. 1953. Fishes of the Gulf of Maine. Fish. Bull. 53: 63-65.

    Google Scholar 

  • Boyd, T.A., C.J. Cha, R.P. Forster & L. Goldstein. 1977. Free amino acids in tissues of the little skate, Raja erinacea, and the stingray, Dasyatis sabina: Effects of environmental dilution. J. Exp. Zool. 199: 435-442.

    Google Scholar 

  • Carlson, S.R. & L. Goldstein. 1997. Urea transport across the cell membrane of skate erythrocytes. J. Exp. Zool. 277: 275-282.

    Google Scholar 

  • Chan, D.K.O. & T.M. Wong. 1977a. Physiological adjustments to dilution of the external medium in the lip-shark Hemiscyllium plagiosum (Bennett). I. Size of body compartments and osmolyte composition. J. Exp. Zool. 200: 71-84.

    Google Scholar 

  • Chan, D.K.O. & T.M. Wong. 1977b. Physiological adjustments to dilution of the external medium in the lip-shark Hemiscyllium plagiosum (Bennett). II. Branchial, renal and rectal gland function. J. Exp. Zool. 200: 85-95.

    Google Scholar 

  • Cohen, J.J., M.A. Krupp & C.A. Chidsey III. 1958. Renal conservation of trimethylamine oxide by the spiny dogfish, Squalus acanthias. Am. J. Physiol. 194: 229-235.

    Google Scholar 

  • Cooper, R.A. & S. Morris. 1998. Osmotic and haemotological response of the Port Jackson shark, Heterodontus portusjacksoni, and the common stingaree, Trygonoptera testacea, upon exposure to diluted sea water. Mar. Biol. 132: 29-42.

    Google Scholar 

  • De Vlaming, V.L. & M. Sage. 1973. Osmoregulation in the euryhaline elasmobranch, Dasyatis sabina. Comp. Biochem. Physiol. 45A: 31-44.

    Google Scholar 

  • Forster, R. & L. Goldstein. 1976. Intracellular osmoregulatory role of amino acids and urea in marine elasmobranchs. Am. J. Physiol. 230: 925-931.

    Google Scholar 

  • Goldstein, L. 1989. Volume regulation in the erythrocyte of the little skate, Raja erinacea. J. Exp. Zool. 2: 136-142.

    Google Scholar 

  • Goldstein, L. & R. Forster. 1971. Osmoregulation and urea metabolism in the little skate, Raja erinacea. Am. J. Phys. 220(3): 742-746.

    Google Scholar 

  • Goldstein, L., W.W. Oppelt & T.H. Maren. 1968. Osmotic regulation and urea metabolism in the lemon shark, Negaprion brevirostris. Am. J. Phys. 215(6): 1493-1497.

    Google Scholar 

  • Haywood, G.P. 1973. Hypo-osmotic regulation coupled with reduced metabolic urea in the dogfish, Poroderma africanum: An analysis of serum osmolality, chloride and urea. Mar. Biol. 23: 121-127.

    Google Scholar 

  • Holmes, W.N. & E.M. Donaldson. 1969. The body compartments and the distribution of Electrolytes. pp. 1-89. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, vol. 1, Excretion, Ionic Regulation, Metabolism, Academic Press, New York.

    Google Scholar 

  • Kaplan, M.A., L. Hays & R.M. Hays. 1974. Evolution of a facilitated diffusion pathway for amides in the erythrocyte. Am. J. Physiol. 226: 1327-1332.

    Google Scholar 

  • King, P.A. & L. Goldstein. 1983. Organic osmolytes and cell volume regulation in fish. Molec. Physiol. 4: 53-66.

    Google Scholar 

  • Maginniss, L.A. & M.H. Hitzig. 1987. Acid-base status and electrolytes in red blood cells and plasma of turtles submerged at 3?C. Am J. Physiol. 253: R64-R70.

    Google Scholar 

  • Pang, P.K.T., R.W. Griffith & J.W. Atz. 1977. Osmoregulation in elasmobranchs. Am. Zool. 17: 365-377.

    Google Scholar 

  • Piermarini, P.M. & D.H. Evans. 1998. Osmoregulation of the Atlantic stingray (Dasyatis sabina) from the freshwater lake Jesup of the St. Johns River, Florida. Physiol. Zool. 71(5): 553-560.

    Google Scholar 

  • Rabinowitz, L. & R.A. Gunther. 1973. Urea transport in elasmobranch erythrocytes. Am. J Physiol. 224: 1109-1115.

    Google Scholar 

  • Robertson, J.D. 1989. Osmotic constituents of the blood plasma and parietal muscle of Scyliorhinus canicula. Comp. Biochem. Physiol. 93A: 799-805.

    Google Scholar 

  • Semple, R.E., D. Sigsworth & J.T. Stitt. 1970. Seasonal observations on the plasma, red cell and blood volumes of two turtle species native to Ontario. Can. Journ. Physiol Pharm. 48: 282-290.

    Google Scholar 

  • Shuttleworth, T.J. 1988. Salt andwater balance-extrarenal mechanisms. pp. 171-194. In: T.J. Shuttleworth (ed.) The Physiology of Elasmobranch Fishes, Springer-Verlag.

  • Scholnick, D.A. & C.P. Magnum. 1991. Sensitivity of hemoglobins to intracellular effectors: Primitive and derived features. J. Exp. Zool. 259: 32-42.

    Google Scholar 

  • Sulikowski, J.A. & L.A. Maginniss. 2001. Effects of environmental dilution on body fluid regulation in the yellow stingray, Urolophus jamaicensis. Comp. Biochem. Physiol. 128(2): 223-232.

    Google Scholar 

  • Walsh, P.J., C.M. Wood, S.F. Perry & S. Thomas. 1994. Urea transport by hepatocytes and red blood cells of selected elasmobranch and teleost fish. J. Exp. Biol. 193: 321-335.

    Google Scholar 

  • Weber, R.E. 1983. TMAO-independence of oxygen affinity and its urea and ATP sensitivities in elasmobranch hemoglobin. J. Exp. Zool. 228: 551-554.

    Google Scholar 

  • Weckell, J.C. & H. Barnett. 1991. New method for analysis of trimethylamine oxide using ferrous sulfate and EDTA. J. Food Sci. 56: 132-138.

    Google Scholar 

  • Yancey, P.H & G.N. Somero. 1979. Counteraction of urea destabilization of protein structure by methylamine osmoregulatory solutes of elasmobranch fishes. J. Biochem. 183: 317-323.

    Google Scholar 

  • Yancey, P.H & G.N. Somero. 1980. Methylamine osmoregulatory solutes of elasmobranch fishes counteract urea inhibition of enzymes. J. Exp. Zool. 212: 205-213.

    Google Scholar 

  • Yancey, P.H., M.E. Clark, S.C. Hand, R.D. Bowlus & G.N. Somero. 1982. Living with water stress: Evolution of osmolyte systems. Science 217: 214-122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sulikowski, J.A., Treberg, J.R. & Howell, W.H. Fluid Regulation and Physiological Adjustments in the Winter Skate, Leucoraja ocellata, Following Exposure to Reduced Environmental Salinities. Environmental Biology of Fishes 66, 339–348 (2003). https://doi.org/10.1023/A:1023918231020

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023918231020

Navigation