Skip to main content
Log in

Synthesis and Characterization of Hydrophobic TMES/TEOS Based Silica Aerogels

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The experimental results on the effect of adding trimethylethoxysilane (TMES) as a co-precursor on the hydrophobicity and physical properties of tetraethoxysilane (TEOS) based silica aerogels, are reported. The molar ratio of TEOS, ethanol (EtOH), water (0.001 M oxalic acid catalyst) was kept constant at 1:5:7 respectively, while the molar ratio of TMES/TEOS (A) was varied from 0 to 0.6. It has been observed that as the A value increases, the gelation time increases. The hydrophobicity was tested by measuring the contact angle, and the surface chemical modification was confirmed by the FTIR spectroscopy studies. The thermal stability of the hydrophobic aerogels was studied in the temperature range from 25 to 800°C. The hydrophobic nature of the aerogel could be maintained up to a temperature of 287°C and above this temperature the aerogels become hydrophilic. The bulk density and the optical transmittance of the aerogels have been found to decrease with increase in A value. The aerogels have been characterized by Fourier transform infrared spectroscopy (FTIR), Optical transmittance, Scanning electron microscopy (SEM), Differential thermal analysis (DTA) and Thermogravimetric analysis (TGA), and Contact angle measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zarzycki, L.L. Hench, and D.R. Ulrich (Eds.), Ultrastructure Processing of Ceramics, Glasses and Composites (Wiley, New york, 1983), p. 43.

    Google Scholar 

  2. L.W. Hrubesh, Chemistry and Industry, 17 December (1990) 824.

  3. A. Venkateswara Rao, D. Haranath, G.M. Pajonk, and P.B. Wagh, Materials Sci. and Tech. 14, 1194 (1998).

    Google Scholar 

  4. C.A.M. Mulder and J.G. Van Lierop, in Aerogels, edited by J. Fricke (Springer-Verlag, Berlin, 1986), p. 68.

    Google Scholar 

  5. D. Haranath, G.M. Pajonk, P.B. Wagh, and A. Venkateswara Rao, Mater. Chem. Phys. 49, 129 (1997).

    Google Scholar 

  6. B. Zhou, J. Non-Cryst. Solids 225, 101 (1998).

    Google Scholar 

  7. J. Fricke and A. Emmerling, in Aerogels-Preparation, Properties, Applications: Chemistry, Spectroscopy and Applications of Sol-Gel Glasses, edited by R. Reisfeld and C.K. Jorgensen (Springer, Berlin, 1990).

    Google Scholar 

  8. Lawrence W. Hrubesh, J. Non-Cryst. Solids 225, 335 (1998).

    Google Scholar 

  9. J. Fricke and T. Tillotson, Thin Solid Films 297, 212 (1997).

    Google Scholar 

  10. G. Herrman, R. Iden, M. Mielka, F. Feich, and B. Ziegler, J. Non-Cryst. Solids 186, 380 (1995).

    Google Scholar 

  11. A. Venkateswara Rao and D. Haranath, Microporous and Mesoporous Materials 30, 267 (1999).

    Google Scholar 

  12. H. Yokogawa and M. Yokoyama, J. Non. Cryst. Solids 186, 23 (1995).

    Google Scholar 

  13. F. Schwertfeger, W. Glaubitt, and U. Schubert, J. Non-Cryst Solids 145, 85 (1992).

    Google Scholar 

  14. U. Schubert, F. Schwertfeger, N. Husing, and E. Seyfried, Mater. Res. Soc. Symp. Proc. 346, 151 (1994).

    Google Scholar 

  15. F. Schwertfeger, A. Emmerling, J. Gross, U. Schubert, and J. Fricke, in Sol-Gel Processing and Applications, edited by Y.A. Attia (Plenum Press, New York, 1994), p. 343.

    Google Scholar 

  16. F. Schwertfeger, D. Frank, and M. Schmidt, J. Non-Cryst. Solids 225, 24 (1998).

    Google Scholar 

  17. K.-H. Lee, S.-Y. Kum, and K.-P. Yoo, J. Non-Cryst. Solids 186, 18 (1995).

    Google Scholar 

  18. F. Schwertfeger, W. Glaubitt, and U. Schubert, J. Non-Cryst. Solids 186, 37 (1995).

    Google Scholar 

  19. S.-K. Kang and S.-Y. Choi, J. Mater. Sci. 35, 4971 (2000).

    Google Scholar 

  20. L.W. Hrubesh, P.R. Coronado, and J.H. Satcher Jr, J. Non-Cryst. Solids 285, 328 (2001).

    Google Scholar 

  21. T. Sumiyoshi, I. Adachi, R. Enomoto, T. Lijima, R. Suda, M. Yokayama, and H. Yokagawa, J. Non. Cryst. Solids 225, 369 (1998).

    Google Scholar 

  22. P. Buisson, C. Hernandez, M. Pierre, and A.C. Pierre, J. Non-Cryst. Solids 285, 295 (2001).

    Google Scholar 

  23. A.R. Buzykaev, A.F. Danilyuk, S.F. Ganzhur, E.A. Kravchenko, and A.P. Onuchin, Nuclear Instruments and Methods in Physics Research A 433, 396 (1999).

    Google Scholar 

  24. J.J. Bikerman, Surface Chemistry: Theory and Applications, 2nd edn. (Academic Press Inc., New York, 1958), p. 343.

    Google Scholar 

  25. N. Hering, K. Schriber, R. Riedel, O. Lichtenberger, and J. Woltersodorf, Appl. Organometal. Chem. 15, 879 (2001).

    Google Scholar 

  26. B.E. Yoldas, J. Non-Cryst. Solids 63, 145 (1984).

    Google Scholar 

  27. A. Venkateswara Rao and G.M. Pajonk, J. Non-Cryst. Solids 285, 202 (2001).

    Google Scholar 

  28. S.K. Kang and S.Y. Choi, J. Mater. Sci. 35 4971 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, A.V., Kalesh, R.R., Amalnerkar, D. et al. Synthesis and Characterization of Hydrophobic TMES/TEOS Based Silica Aerogels. Journal of Porous Materials 10, 23–29 (2003). https://doi.org/10.1023/A:1024074231777

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024074231777

Navigation