Skip to main content
Log in

Language Is Physical

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Some aspects of the physical nature of language are discussed. In particular, physical models of language must exist that are efficiently implementable. The existence requirement is essential because without physical models no communication or thinking would be possible. Efficient implementability for creating and reading language expressions is discussed and illustrated with a quantum mechanical model. The reason for interest in language is that language expressions can have meaning, either as an informal language or as a formal language associated with mathematical or physical theories. It is noted that any universally applicable physical theory, or coherent theory of physics and mathematics together, includes in its domain physical models of expressions for both the informal language used to discuss the theory and the expressions of the theory itself. It follows that there must be some formulas in the formal theory that express some of their own physical properties. The inclusion of intelligent systems in the domain of the theory means that the theory, e.g., quantum mechanics, must describe, in some sense, its own validation. Maps of language expressions into physical states are discussed. A spin projection example is discussed as are conditions under which such a map is a Gödel map. The possibility that language is also mathematical is very briefly discussed.

PACS: 03.67−a; 03.65.Ta; 03.67.Lx

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Benioff, J. Stat. Phys. 22, 563 (1980); Phys. Rev. Lett. 48, 1581 (19982); Int. J. Theor. Phys. 21, 177 (1982).

    Google Scholar 

  2. N. Margolus and L. B. Levitin, Physica D 120, 188 (1998).

    Google Scholar 

  3. V. Giovannetti, S. Lloyd, and L. Maccone, Physics Archive preprint http://arXiv.org/abs/quant-ph/0206001.

  4. R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).

    Google Scholar 

  5. R. P. Feynman, Optics News 11, 11 (1985); reprinted in Found. Phys. 16, 507 (1986).

    Google Scholar 

  6. D. Deutsch, Proc. Roy. Soc. (London) A 400, 997 (1985); ibid. 425, 73 (1989).

    Google Scholar 

  7. R. Landauer, Physics Today 44, 23 (1991); Phys. Lett. A 217, 188 (1996); in Feynman and Computation, Exploring the Limits of Computers, A. J. G. Hey (ed.) (Perseus Books, Reading, Massachusetts, 1998).

    Google Scholar 

  8. I. T. Adamson, Introduction to Field Theory, 2nd. Edition (Cambridge University Press, London, 1982).

    Google Scholar 

  9. P. Benioff, Phys. Rev. A 63, 032305 (2001).

    Google Scholar 

  10. P. Benioff, Algorithmica, Special Issue; Phys. Rev. A 64, 0522310 (2001).

    Google Scholar 

  11. S. Lloyd, Nature 406, 1047 (2000).

    Google Scholar 

  12. S. Weinberg, Dreams of a Final Theory (Vintage Books, New York City, 1994).

    Google Scholar 

  13. P. Benioff, Foundations of Physics 32, 989 (2002).

    Google Scholar 

  14. H. P. Stapp, Mind, Matter, and Quantum Mechanics (Springer-Verlag, Berlin, 1993).

    Google Scholar 

  15. E. Squires, Conscious Mind in the Physical World (IOP Publishing, Bristol, United Kingdom, 1990).

    Google Scholar 

  16. D. Page, Physics Archive preprint http://arXiv.org/abs/quant-ph/0108039.

  17. R. Penrose, The Emperor's New Mind (Penguin Books, New York, 1991).

    Google Scholar 

  18. J. Väänänen, Bull. Symbolic Logic 7, 504 (2001).

    Google Scholar 

  19. P. Benioff, Phys. Rev. A 59, 4223 (1999); J. Phys. A: Math. Gen. 35, 5843 (2002).

    Google Scholar 

  20. J. R. Shoenfield, Mathematical Logic (Addison-Wesley Publ. Co., Reading, Massachusetts, 1967).

    Google Scholar 

  21. M. Tegmark, Fortsch. Phys. 46, 855 (1998).

    Google Scholar 

  22. R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Phys. Rev. Lett. 77, 198 (1996); D. P. DiVincenzo and P. W. Shor, Phys. Rev. Lett. 77, 3260 (1996); E. M. Raines, R. H. Hardin, P. W. Shor, and N. J. A. Sloane, Phys. Rev. Lett. 79, 954 (1997).

    Google Scholar 

  23. K. Gödel, Ñber formal unentscheidbare Sätze der Principia Mathematica und Vervandter Systeme I. Monatschefte für Mathematik und Physik, 38, 173 (1931).

    Google Scholar 

  24. R. Smullyan, Gödel's Incompleteness Theorems (Oxford University Press, Oxford, United Kingdom, 1992).

    Google Scholar 

  25. A. A. Frankel, Y. Bar-hillel, A. Levy, and D. van Dalen, Foundations of Set Theory, second revised edition, Studies in Logic and the Foundations of Mathematics, Vol. 67 (North-Holland Publ. Co., Amsterdam, The Netherlands, 1973).

    Google Scholar 

  26. P. Benioff, J. Math. Phys. 17, 618 (1976) and J. Math. Phys. 17, 629 (1976).

    Google Scholar 

  27. W. W. Marek and J. Mycielski, Am. Math. Mon. 108, 449 (2001).

    Google Scholar 

  28. S. Shapiro, Philosophy of Mathematics: Structure and Ontology (Oxford University Press, Oxford, United Kingdom, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benioff, P. Language Is Physical. Quantum Information Processing 1, 495–509 (2002). https://doi.org/10.1023/A:1024074616373

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024074616373

Navigation