Skip to main content
Log in

Synthesis of Kenyaite, Magadiite and Octosilicate Using Poly(ethylene glycol) as a Template

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Three types of layered silicates, namely octosilicate, magadiite and kenyaite, were synthesized using poly(ethylene glycol) (PEG). The influence of reaction parameters, including alkali source, silica source, PEG molecular weight, reaction time and temperature, on the formation of these three phases was investigated. The results indicate that magadiite is preferred when (i) using NaOH as the alkali source and at a lower temperature (150°C), with fumed silica, tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), Ludox-AS 40 or colloidal sol acting as the silica source in the presence of PEG 200; (ii) using fumed silica as the silica source and PEG 300 as the template at 150°C; (iii) at a higher temperature (180°C), using PEG 200 as template and TEOS as the silica source; and (iv) at 180°C with a combination of PEG 300 and fumed silica. Compared to magadiite, kenyaite was favored at a higher temperature (180°C) with PEG 200 and NaOH, KOH or RbOH, while using fumed silica, silica gel, or colloidal sol as silica source; or at the lower temperature (150°C) using NaOH as alkali source, PEG 200 as template, and silica gel or silicic acid as the silica source. Octosilicate was obtained at 90°C with the combination of NaOH, PEG 200 and fumed silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.A. Crone, K.R. Franklin, and P. Graham, J. Mater. Chem. 5, 2007 (1995).

    Google Scholar 

  2. R.A. Sheppard, A.J. Gude, and R.L. Hay, Am. Mineral. 55, 358 (1970).

    Google Scholar 

  3. Z. Johan and G.F. Maglime, Bull. Soc. Fr. Mineral Crystallogr. 95, 371 (1972).

    Google Scholar 

  4. T. Yanagisawa, T. Shimizu, K. Kuroda, and C. Kato, Bull. Chem. Soc. Jpn. 63, 988 (1990).

    Google Scholar 

  5. T. Yanagisawa, T. Shimizu, K. Kuroda, and C. Kato, Bull. Chem. Soc. Jpn. 63, 1535 (1990).

    Google Scholar 

  6. S. Inagaki, Y. Fukushima, and K. Kuroda, J. Chem. Soc. Chem. Comm. 680 (1993).

  7. L. McCulloch, J. Am. Chem. Soc. 74, 2453 (1952).

    Google Scholar 

  8. R.K. Iler, J. Colloid. Sci. 19, 648 (1964).

    Google Scholar 

  9. W. Schwieger, D. Heidemann, and K.H. Bergk, Rev. Chim. Mineral. 22, 639 (1985).

    Google Scholar 

  10. H.P. Eugster, Science 157, 1117 (1967).

    Google Scholar 

  11. S.I. Zones, U.S. Patent No. 4,626,421 (1986).

  12. S.I. Zones, U.S. Patent No. 4,676,958 (1987).

  13. S.I. Zones, U.S. Patent No. 4,689,207 (1987).

  14. W. Schwieger, D. Freude, P. Werner, and D. Heidemann, in Synthesis of Microporous Materials, edited by M.L. Occelli and H. Robson (Van Nostrand Reinhold, New York, 1992), Vol. 2, Ch. 11, p. 229.

    Google Scholar 

  15. R.B. Borade and A. Clearfield, Chem. Commun. 277 (1997).

  16. M. Cheng, D. Tan, X. Liu, X. Han, X. Bao, and L. Lin, Micropor. Mesopor. Mater. 42, 307 (2001).

    Google Scholar 

  17. I. Güray, J. Warzywoda, N. Bac, and A. Sacco, Jr.,Micropor. Mesopor. Mater. 31, 241 (1999).

    Google Scholar 

  18. R.A. Fletcher and D.M. Bibby, Clays Clay Mineral. 35, 318 (1987).

    Google Scholar 

  19. S.-Y. Jeong, J.-K. Suh, H. Jin, J.-M. Lee, and O.-Y. Kwon, J. Colloid Interface Sci. 180, 269 (1996).

    Google Scholar 

  20. O.-Y. Kwon, S.-Y. Jeong, J.-K. Suh, and J.-M. Lee, Bull. Korean Chem. Soc. 16, 737 (1995).

    Google Scholar 

  21. O.-Y. Kwon and S.-W. Choi, Bull. Korean Chem. Soc. 20, 69 (1999).

    Google Scholar 

  22. E.W. Valyocsik, U.S. Patent No. 5,063,039 (1991).

  23. I.A. Crone, K.R. Franklin, and P. Graham, J. Mater. Chem. 5, 2007 (1995).

    Google Scholar 

  24. K. Beneke and G. Lagaly, Am. Mineral. 68, 818 (1983).

    Google Scholar 

  25. Y. Huang, Z. Jiang, and W. Schwieger, Chem. Mater. 11, 1210 (1999).

    Google Scholar 

  26. S.L. Burkett and M.E. Davis, Micropor. Mater. 1, 265 (1993).

    Google Scholar 

  27. K. Kosuge and A. Tsunashima, Langmuir 12, 1124 (1996).

    Google Scholar 

  28. R. Spring, M.E. Davis, J.S. Kauffman, and C. Dybowski, Ind. Eng. Chem. Res. 29, 213 (1990).

    Google Scholar 

  29. C. Eypert-Blaison, E. Sauzéat, M. Pelletier, L.J. Michot, F. Villiéras, and B. Hambert, Chem. Mater. 13, 1480 (2001).

    Google Scholar 

  30. K. Isoda and K. Kuroda, Chem. Mater. 12, 1702 (2000).

    Google Scholar 

  31. S.-Y. Jeong and J.-M. Lee, Bull. Korean Chem. Soc. 19, 218 (1998).

    Google Scholar 

  32. H.O. Pastone, M. Munsignatti, and A.J.S. Mascarenhas, Clays Clay Mineral. 48, 224 (2000).

    Google Scholar 

  33. M. Ogawa, M. Miyoshi, and K. Kuroda, Chem. Mater. 10, 3787 (1998).

    Google Scholar 

  34. U. Brenn, W. Schweiger, and K. Wuttig, Colloid Polymer Sci. 277, 394 (1999).

    Google Scholar 

  35. S. Okutomo, K. Kuroda, and M. Ogawa, Appl. Clay Sci. 15, 253 (1999).

    Google Scholar 

  36. S.-Y. Jeong, O.-Y. Kwon, J.-K. Suh, H. Jin, and J.-M. Lee, Stud. Surf. Sci. Catal. 105, 53 (1997).

    Google Scholar 

  37. E. Terrés-Rojas, J.M. Dominguez, M.A. Leyva, R.P. Salas, and E. Lopez, in Synthesis of Porous Materials Zeolites, Clays and Nanostructures, edited by M.L. Occelli and H. Kessler (Marcel Dekker, Inc., New York, NY, 1997), p. 567.

    Google Scholar 

  38. Z. Wang, T. Lan, and T.J. Pinnavaia, Chem. Mater. 8, 2200 (1996).

    Google Scholar 

  39. J.M. Garcés, S.C. Rocke, C.E. Crowder, and D.L. Hasha, Clays Clay Mineral. 36, 409 (1988).

    Google Scholar 

  40. C.A. Fyfe, J. Skibsted, and W. Schwieger, Inorg. Chem. 40, 5906 (2001).

    Google Scholar 

  41. Y. Mitamura, Y. Komori, S. Hayashi, Y. Sugahara, and K. Kuroda, Chem. Mater. 13, 3747 (2001).

    Google Scholar 

  42. G. Scholzen, K. Beneke, and G. Lagaly, Z. Anorg. Allg. Chem. 597, 183 (1991).

    Google Scholar 

  43. G.W. Brindley, Am. Mineral. 54, 1583 (1969).

    Google Scholar 

  44. M. Ogawa and Y. Takizawa, J. Phys. Chem. 103, 5005 (1999).

    Google Scholar 

  45. F. Ágnes, K. Imre, S.-I. Niwa, M. Toba, Y. Kiyozumi, and F. Mizukami, Appl. Catal. A: General 176, L153 (1999).

    Google Scholar 

  46. J.S. Dailey and T.J. Pinnavaia, Chem. Mater. 4, 855 (1992).

    Google Scholar 

  47. Á. Fudala, Z. Kónya, Y. Kiyozumi, S.-I. Niwa, M. Toba, F. Mizukami, P.B. Lentz, J. Nagy, and I. Kiricsi, Micropor. Mesopor. Mater. 35/36, 631 (2000).

    Google Scholar 

  48. O.-Y. Kwon, H.-S. Shin, and S.-W. Choi, Chem. Mater. 12, 1273 (2000).

    Google Scholar 

  49. G. Lagaly, K. Beneke, and A. Weiss, Am. Mineral. 60, 642 (1975).

    Google Scholar 

  50. G. Lagaly, K. Beneke, and A. Weiss, Am. Mineral. 60, 650 (1975).

    Google Scholar 

  51. C. Eypert-Blaison, B. Humbert, L.J. Michot, M. Pelletier, E. Sauzéat, and F. Villiéras, Chem. Mater. 13, 4439 (2001).

    Google Scholar 

  52. U. Brenn, H. Ernst, D. Freude, R. Herrmann, R. Jahnig, H.G. Karge, J. Karger, T. Konig, B. Madler, U.-T. Pingel, D. Prochnow, and W. Schwieger, Micropor. Mesopor. Mater. 40, 43 (2000).

    Google Scholar 

  53. S. Vortmann, J. Rius, S. Siegmann, and H. Gies, J. Phys. Chem. B 101, 1292 (1997).

    Google Scholar 

  54. G. Borebely and H.K. Beyer, Clays Clay Mineral. 39, 490 (1991).

    Google Scholar 

  55. K. Beneke and G. Lagaly, Am. Mineral. 74, 224 (1989).

    Google Scholar 

  56. E.W. Valyocsik, U.S. Patent No. 4,632,815 (1986).

  57. P.A. Jocobs and J.A. Martens, Stud. Surf. Catal. Catal. 33, 71 (1987).

    Google Scholar 

  58. F. Delprato, L. Delmotte, J.L. Guth, and L. Huve, Zeolites 10, 546 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, F., Balkus, K.J. Synthesis of Kenyaite, Magadiite and Octosilicate Using Poly(ethylene glycol) as a Template. Journal of Porous Materials 10, 5–15 (2003). https://doi.org/10.1023/A:1024078332686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024078332686

Navigation