Skip to main content
Log in

Deviation from Wiedemann–Franz Law for the Thermal Conductivity of Liquid Tin and Lead at Elevated Temperature

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal conductivities of tin and lead in solid and liquid states have been determined using a nonstationary hot wire method. Measurements on tin and lead were carried out over temperature ranges of 293 to 1473 K and 293 to 1373 K, respectively. The thermal conductivity of solid tin is 63.9±1.3 W⋅m−1⋅K−1 at 293 K and decreases with an increase in temperature, with a value of 56.6±0.9 W⋅m−1⋅K−1 at 473 K. For solid lead, the thermal conductivity is 36.1±0.6 W⋅m−1⋅K−1 at 293 K, decreases with an increase in temperature, and has a value of 29.1±1.1 W⋅m−1⋅K−1 at 573 K. The temperature dependences for solid tin and lead are in good agreement with those estimated from the Wiedemann–Franz law using electrical conductivity values. The thermal conductivities of liquid tin displayed a value of 25.7±1.0 W⋅m−1⋅K−1 at 573 K, and then increased, showing a maximum value of about 30.1 W⋅m−1⋅K−1 at 673 K. Subsequently, the thermal conductivities gradually decreased with increasing temperature and the thermal conductivity was 10.1±1.0 W⋅m−1⋅K−1 at 1473 K. In the case of liquid lead, the same tendency, as was the case of tin, was observed. The thermal conductivities of liquid lead displayed a value of 15.4±1.2 W⋅m−1⋅K−1 at 673 K, with a maximum value of about 15.6 W⋅m−1⋅K−1 at 773 K and a minimum value of about 11.4±0.6 W⋅m−1⋅K−1 at 1373 K. The temperature dependence of thermal conductivity values in both liquids is discussed from the viewpoint of the Wiedemann–Franz law. The thermal conductivities for Group 14 elements at each temperature were compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Berman and D. K. C. MacDonald, Proc. Roy. Soc. (London) A 209:368(1951).

    Google Scholar 

  2. R. W. Powell and R. P. Tye, Proc. Conf. Thermodynamic and Transport Properties of Fluids, Vol. 182 (Institution of Mechanical Engineers, London, 1958).

    Google Scholar 

  3. R. P. Yurchak and L. P. Filippov, High Temp. 3:290(1965).

    Google Scholar 

  4. L. P. Filippov, Int. J. Heat Mass Transfer 9:681–691 (1966).

    Google Scholar 

  5. Ya. I. Dutchak and P. V. Panasynk, Soviet Phys. Solid State 8:2244(1967).

    Google Scholar 

  6. M. J. Duggin, J. Phys. F2:433(1971).

    Google Scholar 

  7. S. Nakamura, T. Hibiya, and F. Yamamoto, J. Appl. Phys. 68:5125(1990).

    Google Scholar 

  8. W. B. Brown, Phys. Rev. 22:171(1923).

    Google Scholar 

  9. N. A. Nikolskii, N. A. Kalakutskaya, I. M. Pchelkin, T. V. Klassen, and V. A. Veltishcheva, Voprosy Teploobmena (Akad Nauk SSR Energet Inst., 1959).

  10. B. P. Pashaev, Soviet Phys. Solid State 3:303(1961).

    Google Scholar 

  11. E. Yamasue, M. Susa, H. Fukuyama, and K. Nagata, Metallurgical and Materials Trans. A 30:1971(1999).

    Google Scholar 

  12. E. Yamasue, M. Susa, H. Fukuyama, and K. Nagata, J. Crystal Growth 234:121(2002).

    Google Scholar 

  13. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd Ed. (Oxford University Press, 1959).

  14. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermophysical Properties of Matter, Vol. 1, Thermal Conductivity of Metallic Elements and Alloys (IFI/Plenum Press, New York, 1970).

    Google Scholar 

  15. M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, Vol. 1–2, 3rd Ed. (The American Chemical Society, 1985).

  16. Japanese Industrial Standards Committee, JIS C1602, Japanese Standards Assoc. (1995).

  17. Y. Kawai and Y. Shiraishi, Handbook of Physico-Chemical Properties at High Temperatures (The Iron and Steel Institute of Japan, Tokyo, 1988).

    Google Scholar 

  18. H. A. Davis and J. S. L. Leash, Phys. and Chem. Liquids 2:1(1970).

    Google Scholar 

  19. M. Pokorny and H. O. Astrom, Phys. and Chem. Liquids 3:115(1972).

    Google Scholar 

  20. J. G. Cook, Can. J. Phys. 60:1759(1982).

    Google Scholar 

  21. A. J. Greenfield, Phys. Rev. A. 135:1589(1964).

    Google Scholar 

  22. J. M. Ziman, Principles of the Theory of Solids, 2nd Ed. (Cambridge University Press, 1972).

  23. P. W. Anderson, Phys. Rev. 109:1492(1958).

    Google Scholar 

  24. B. L. Altshuler and A. G. Aronov, Electron-Electron Interactions in Disordered Systems (Elsevier, Amsterdam, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamasue, E., Susa, M., Fukuyama, H. et al. Deviation from Wiedemann–Franz Law for the Thermal Conductivity of Liquid Tin and Lead at Elevated Temperature. International Journal of Thermophysics 24, 713–730 (2003). https://doi.org/10.1023/A:1024088232730

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024088232730

Navigation