Skip to main content
Log in

The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanofluids, a new class of solid/liquid suspensions, offer scientific challenges because their measured thermal conductivity is one order of magnitude greater than predictions. It has long been known that liquid molecules close to a solid surface form layered solid-like structures, but little is known about the connection between this nanolayer and the thermal properties of the suspensions. Here, we have modified the Maxwell equation for the effective thermal conductivity of solid/liquid suspensions to include the effect of this ordered nanolayer. Because this ordered nanolayer has a major impact on nanofluid thermal conductivity when the particle diameter is less than 10 nm, a new direction is indicated for development of next-generation coolants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, G., 1997. Size and interface effects on thermal conductivity ofsuperlattices and periodic thin-film structures. J. Heat Transfer 119, 220–229.

    Google Scholar 

  • Cheng, S.C. & R.I. Vachon, 1969. The prediction of the thermal conductivity of two andthree phase solid heterogeneous mixtures. Int. J. Heat Mass Transfer 12, 249–264.

    Google Scholar 

  • Choi, S.U.S., 1995. Enhancing thermal conductivity of fluids with nanoparticles. In:Siginer, D.A. and Wang, H.P. eds. Developments and Applications of Non-Newtonian Flows, ASME, New York, FED ¶ Vol. 231/MD ¶ Vol. 66, pp. 99–105.

    Google Scholar 

  • Choi, S.U.S.,Z.G. Zhang, W. Yu, F.E. Lockwood & E.A. Grulke, 2001. Anomalous thermal conductivity enhancement in nanotube suspension. Appl. Phys. Lett. 79(14), 2252–2254.

    Google Scholar 

  • Davis, L.C. & B.E. Artz, 1995. Thermal conductivity of metal-matrix composites. J.Appl. Phys. 77(10), 4954–4960.

    Google Scholar 

  • Devpura, A., P.E. Phelan & R.S. Prasher,2001. Size effect on the thermal conductivity of polymers laden with highly conductive filler particles. Microscale Thermophys. Eng. 5, 177–189.

    Google Scholar 

  • Eastman, J.A., S.U.S. Choi, S. Li, W. Yu & L.J. Thompson, 2001. Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(6), 718–720.

    Google Scholar 

  • Every, A.G., Y. Tzou, D.P.H. Hasselman & R. Raj, 1992. The effect ofparticle size on the thermal conductivity of ZnS/diamond composites. Acta Metall. Mater. 40(1), 123–129.

    Google Scholar 

  • Hamilton, R. L. & O.K. Crosser, 1962. Thermal conductivityof heterogeneous two-component systems. I & EC Fundamentals 1, 187–191.

    Google Scholar 

  • Henderson, J.R. & F. van Swol, 1984. On the interface between a fluid and a planarwall:Theory and simulations of a hard sphere fluid at a hard wall. Mol. Phys. 51, 991–1010.

    Google Scholar 

  • Jeffrey, D.J., 1973. Conduction through a random suspension of spheres. Proc. R. Soc.London, Ser. A 335, 355–367.

    Google Scholar 

  • Lee, S., S.U.S. Choi, S. Li & J.A. Eastman,1999. Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transfer 121, 280–289.

    Google Scholar 

  • Maxwell, J.C., 1873. Electricity and Magnetism.Clarendon Press, Oxford, UK.

    Google Scholar 

  • Schwartz, L.M., E.J. Garboczi & D.P. Bentz, 1995.Interfacial transport in porous media: Application to DC electrical conductivity of mortars. J. Appl. Phys. 78(10), 5898–5908.

    Google Scholar 

  • Torquato, S. & M.D. Rintoul, 1995. Effect of theinterface on the properties of composite media. Phys. Rev. Lett. 75(22), 4067–4070.

    Google Scholar 

  • Yu, C.-J., A.G. Richter, A. Datta, M.K. Durbin & P. Dutta, 2000. Molecular layeringin a liquid on a solid substrate: An X-ray reflectivity study. Physica B 283, 27–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.U.S. Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, W., Choi, S. The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model. Journal of Nanoparticle Research 5, 167–171 (2003). https://doi.org/10.1023/A:1024438603801

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024438603801

Navigation