Skip to main content
Log in

Electropolymerization of aniline on carbonized polyacrylonitrile aerogel electrodes: applications for supercapacitors

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Polyaniline was electrochemically synthesized on carbon polyacrylonitrile aerogel electrodes for use as active material in supercapacitor devices. Electrochemical characterization was performed by cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and charge–discharge experiments in aqueous medium. Two types of electrochemical phenomenon were observed; the first is based on electrostatic energy storage in the double layer at the interface solution/carbon polyacrylonitrile (PAN) aerogel, the other is associated with the redox processes in polyaniline, for which the faradaic charge depends on the potential range. The performance of the supercapacitor was tested for capacity, energy and power density and self-discharge. Specific capacitance as high as 230 F g−1 was reached. A symmetrical supercapacitor showed good cyclability (over 3000 cycles) during repeated charge–discharge cycles. The results are very promising and demonstrate the viability of a symmetric supercapacitor based on carbon PAN aerogel covered by an electronically conducting polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Nui, E.K. Sichel, R. Hoch, D. Moy and H. Tennet, Appl. Phys. Lett. 70 (1997) 1480.

    Google Scholar 

  2. B.E. Conway, ‘Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications’ (Academic/Plenum, New York, 1999).

    Google Scholar 

  3. B.E. Conway, J. Electrochem. Soc. 138 (1991) 1539.

    Google Scholar 

  4. P. Gouérec, D. Miousse, F. Tran-Van and L.H. Dao, J. New Mater. Electrochem. Syst. 2 (1999) 221.

    Google Scholar 

  5. P. Gouérec, H. Talbi, D. Miousse, F. Tran-Van, K.H. Lee and L.H. Dao, J. Electrochem. Soc. 148 (2001) 94.

    Google Scholar 

  6. C. Arbizzani, M. Mastragostino, L. Meneghello and R. Paraventi, Adv. Mater. 8 (1996) 331.

    Google Scholar 

  7. A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld and J.P. Ferraris, J. Power Sources 47 (1994) 89.

    Google Scholar 

  8. J.C. Chiang and A.G. Mac Diarmid, Synth. Met. 13 (1986) 193.

    Google Scholar 

  9. A.G. MacDiarmid, L.S. Yang, W.S. Huang and B.D. Humphrey, Synth. Met. 18 (1987) 393.

    Google Scholar 

  10. L-S. Yang, Z-Q. Shan and Y-L. Liu, J. Power Sources 34 (1991) 141.

    Google Scholar 

  11. L. Yang, W. Qiu and Q. Liu, Solid State Ionics 86 (1996) 819.

    Google Scholar 

  12. P. Novak, K. Muller, K.S.V. Santhanam and O. Haas, Chem. Rev. 97 (1997) 207.

    Google Scholar 

  13. M. Morita, S. Miyazaki, M. Ishikawa, Y. Matsuda, H. Tajima, K. Adachi and F. Anan, J. Electrochem. Soc. 142 (1995) 3.

    Google Scholar 

  14. J. Desilvestro, W. Scheifele and O. Haas, J. Electrochem. Soc. 139 (1992) 2727.

    Google Scholar 

  15. J.P. Zheng, J. Huang and T.R. Jow, J. Electrochem. Soc. 144 (1997) 2026.

    Google Scholar 

  16. B. Garcia, F. Fusalba and D. Bélanger, Can. J. Chem. 75 (1997) 1536.

    Google Scholar 

  17. D. Belanger, X.M. Ren, J. Davey, F. Uribe and S. Gottesfeld, J. Electrochem. Soc. 147 (2000) 2923.

    Google Scholar 

  18. A. Dang, D. Miousse, H. Talbi and L.H. Dao, in preparation.

  19. S. Yonezawa, K. Kanamura and Z-I. Takehara, J. Electrochem. Soc. 140 (1993) 629.

    Google Scholar 

  20. S. Yonezawa, K. Kanamura and Z-I. Takehara, J. Electrochem. Soc. 142 (1995) 3309.

    Google Scholar 

  21. S.H. Jordanov, H.A. Kozlowska and B.E. Conway, J. Electrochem. Soc. 125 (1978) 1471.

    Google Scholar 

  22. D. Qu and H. Shi, J. Power Sources 74 (1998) 99.

    Google Scholar 

  23. S.T. Mayer, R.W. Pekala and J.L. Kaschmitter, J. Electrochem. Soc. 140 (1993) 2.

    Google Scholar 

  24. H. Talbi, A. Dang, L.H. Dao and K.H. Lee, submitted for publication in J. Appl. Chem.

  25. A.A. Pud, Synth. Met. 66 (1994) 1.

    Google Scholar 

  26. H.N. Dinh, J. Ding, S.J. Xia and V.I. Birss, J. Electroanal. Chem. 459 (1998) 45.

    Google Scholar 

  27. F. Fusalba, N.E. Mehdi, L. Breau and D. Bélanger, Chem. Mater. 11 (1999) 2743.

    Google Scholar 

  28. C. Arbizzani, M. Mastragostino and L. Meneghello, Electrochim. Acta 40 (1995) 2223.

    Google Scholar 

  29. M. Schwarzenberg, K. Jobst and L. Sawtschenko, Electrochim. Acta 35 (1990) 403.

    Google Scholar 

  30. A. Laforgue, P. Simon, C. Sarrazin and J-F. Fauvarque, J. Power Sources 80 (1999) 142.

    Google Scholar 

  31. B.E. Conway, J. Power Sources 63 (1996) 255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.H. Dao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talbi, H., Just, PE. & Dao, L. Electropolymerization of aniline on carbonized polyacrylonitrile aerogel electrodes: applications for supercapacitors. Journal of Applied Electrochemistry 33, 465–473 (2003). https://doi.org/10.1023/A:1024439023251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024439023251

Navigation