Skip to main content
Log in

Structure and Function of a Multidomain Alkaline Xylanase from Alkaliphilic Bacillus Sp. Strain 41M-1

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Xylanase is an enzyme that catalyzes the hydrolysis of xylan, a β-1,4-linked xylose polymer. Alkaliphilic Bacillus sp. strain 41M-1 secretes a xylanase (xylanase J) that has an alkaline pH optimum. Xylanase J is a multidomain enzyme and consists of two functional domains: a family 11/G catalytic domain and a non-catalytic xylan-binding domain. The xylan-binding domain bound to xylan and enhanced catalytic activity of the adjacent catalytic domain. Mutational analyses revealed some amino acid residues that contribute to catalytic activity, alkaliphily and xylan-binding activity of xylanase J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Horikoshi and W. D. Grant, Superbugs, Microorganisms in Extreme Environments (Japan Scientific Societies Press, Tokyo, 1990).

    Google Scholar 

  2. M. W. W. Adams and R. M. Kelly, C & EN 18 (1995) 32.

    Google Scholar 

  3. E. Schulze, Ber. Dtsch. Chem. Ges. 24 (1891) 2277.

    Google Scholar 

  4. R. L. Whister and E. L. Richards, in The Carbohydrates, W. Pigman and D. Horton (eds) (Academic Press, New York, 1970) p. 447.

    Google Scholar 

  5. K. K. Y. Wong, L. U. L. Tan and J. N. Saddler, Microbiol. Rev. 52 (1988) 305.

    PubMed  Google Scholar 

  6. K. B. Bastawde, World J. Microbiol. Biotechnol. 8 (1992) 353.

    Google Scholar 

  7. Q. K. Beg, M. Kapoor, L. Mahajan and G. S. Hoondal, Appl. Microbiol. Biotechnol. 56 (2001) 326.

    PubMed  Google Scholar 

  8. P. Biely, Trends Biotechnol. 3 (1985) 286.

    Google Scholar 

  9. L. Viikari, A. Kantelinen, J. Sundquist and M. Linko, FEMS Microbiol. Rev. 13 (1994) 335.

    Google Scholar 

  10. S. Nakamura, R. Aono, K. Wakabayashi and K. Horikoshi, in Xylans and Xylanases, (eds) J. Visser, G. Beldman, M. A. Kustersvan Someren and A. G. J. Volagen (Elsevier Science Publishers, Amsterdam, 1992) p. 443.

    Google Scholar 

  11. S. Nakamura, K. Wakabayashi, R. Nakai, R. Aono and K. Horikoshi, World J. Microbiol. Biotechnol. 9 (1993) 221.

    Google Scholar 

  12. S. Nakamura, K. Wakabayashi, R. Nakai, R. Aono and K. Horikoshi, Appl. Environ. Microbiol. 59 (1993) 2311.

    PubMed  Google Scholar 

  13. S. Nakamura, R. Nakai, K. Wakabayashi, Y. Ishiguro, R. Aono and K. Horikoshi, Biosci. Biotechnol. Biochem. 58 (1994) 78.

    Google Scholar 

  14. S. Nakamura, R. Nakai, Y. Ishiguro, K. Wakabayashi, R. Aono and K. Horikoshi, in Genetics, Biochemistry and Ecology of Lignocellulose Degradation, (eds) K. Shimada, S. Hoshino, K. Ohmiya, K. Sakka, Y. Kobayashi and S. Karita (Uni Publishers, Tokyo, 1994) p. 334.

    Google Scholar 

  15. S. Nakamura, Y. Ishiguro, R. Nakai, K. Wakabayashi, R. Aono and K. Horikoshi, J. Mol. Catal. B: Enzymatic 1 (1995) 7.

    Google Scholar 

  16. S. Nakamura, K. Wakabayashi, R. Nakai, T. Asano, R. Aono and K. Horikoshi, in Genetics, Biochemistry and Ecology of Lignocellulose Degradation, (eds) K. Shimada, S. Hoshino, K. Ohmiya, K. Sakka, Y. Kobayashi and S. Karita (Uni Publishers, Tokyo, 1994) p. 343.

    Google Scholar 

  17. R. Nakai, T. Asano, K. Wakabayashi, R. Aono and S. Nakamura, Protein Eng. 7 (1994) 1154.

    Google Scholar 

  18. R. Nakai, K. Wakabatashi, T. Asano, R. Aono, K. Horikoshi and S. Nakamura, Nucleic Acids Symp. Ser. 31 (1994) 235.

    Google Scholar 

  19. B. Henrissat, Biochem. J. 280 (1991) 309.

    PubMed  Google Scholar 

  20. B. Henrissat and A. Bairoch, Biochem. J. 293 (1993) 781.

    PubMed  Google Scholar 

  21. B. Henrissat and A. Bairoch, Biochem. J. 316 (1996) 695.

    PubMed  Google Scholar 

  22. E. P. Ko, H. Akatsuka, H. Moriyama, A. Shinmyo, Y. Hata, Y. Katsube, I. Urabe and H. Okada, Biochem. J. 288 (1992) 117.

    PubMed  Google Scholar 

  23. R. Nakai, K. Namba, T. Kubo, K. Wakabayashi, S. Nakamura, R. Aono and K. Horikoshi, Protein Eng. 8 (1995) 962.

    Google Scholar 

  24. S. Nakamura, R. Nakai, K. Namba, T. Kubo, K. Wakabayashi, R. Aono and K. Horikoshi, Nucleic Acids Symp. Ser. 34 (1995) 99.

    PubMed  Google Scholar 

  25. M. L. Sinnott, Chem. Rev. 90 (1990) 1171.

    Google Scholar 

  26. J. D. McCarter and S. G. Withers, Curr. Opin. Struct. Biol. 4 (1994) 885.

    PubMed  Google Scholar 

  27. Y. Katsube, Y. Hata, H. Yamaguchi, H. Moriyama, A. Shinmyo and H. Okada, in Protein Engineering, (Ed.) M. Ikehara (Japan Scientific Societies Press, Tokyo, 1990) p. 91.

    Google Scholar 

  28. W. W. Wakarchuk, R. L. Campbell, W. L. Sung, J. Davoodi and M. Yaguchi, Protein Sci. 3 (1994) 467.

    PubMed  Google Scholar 

  29. A. Torronen and J. Rouvinen, Biochemistry 34 (1995) 847.

    PubMed  Google Scholar 

  30. H. Tamanoi, S. Kasahara, T. Kuroda, T. Kubo, R. Nakai, K. Namba, K. Wakabayashi and S. Nakamura, Nucleic Acids Symp. Ser. 39 (1998) 205.

    Google Scholar 

  31. N. R. Gilkes, B. Henrissat, D. G. Kilburn, R. C. Miller Jr. and R. A. J. Warren, Microbiol. Rev. 55 (1991) 303.

    PubMed  Google Scholar 

  32. T. Kubo, R. Nakai, H. Tamanoi, K. Wakabayashi and S. Nakamura, Nucleic Acids Symp. Ser. 35 (1996) 221.

    Google Scholar 

  33. P. M. Coutinho and B. Henrissat, in Recent Advances in Carbohydrate Engineering, (eds) H. J. Gilbert, G. J. Davies, B. Svensson and B. Henrissat (Royal Society of Chemistry, Cambridge, 1999) p. 3

    Google Scholar 

  34. S. Nakamura, J. Appl. Glycosci. 44 (1997) 471.

    Google Scholar 

  35. S. F. Parmley and G. P. Smith, Gene 73 (1988) 305.

    PubMed  Google Scholar 

  36. H. Miyakubo, A. Sugio, T. Kubo, R. Nakai, K. Wakabayashi and S. Nakamura, Nucleic Acids Symp. Ser. 44 (2000) 165.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, S. Structure and Function of a Multidomain Alkaline Xylanase from Alkaliphilic Bacillus Sp. Strain 41M-1. Catalysis Surveys from Asia 7, 157–164 (2003). https://doi.org/10.1023/A:1025337608799

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025337608799

Navigation