Skip to main content
Log in

Projectively Dual Varieties

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. P. Aluffi, “Singular schemes of hypersurfaces,” Duke Math. J., 80, 325–351 (1995).

    Google Scholar 

  2. P. Aluffi and F. Cukierman, “Multiplicities of discriminants,” Manuscripta Math., 78, 245–258 (1993).

    Google Scholar 

  3. A. Z. Anan'in, “Quasiderivations of the algebra of diagonal matrices,” in: Tret'ya Sibirskaya shkola po algebre i analizu [in Russian], Irkutsk University (1990), pp. 8–15.

  4. E. M. Andreev, E. B. Vinberg, and A. G. Elashvili, “Orbits of greatest dimension in semisimple linear Lie groups,” Functional Anal. Appl., 1, 257–261 (1967).

    Google Scholar 

  5. E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of Algebraic Curves, Vol. 1, Springer-Verlag, New York (1985).

    Google Scholar 

  6. V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York–Heidelberg–Berlin (1978).

    Google Scholar 

  7. M. D. Atkinson, “Primitive spaces of matrices of bounded rank, II,” J. Australian Math. Soc., 34, 306–315 (1983).

    Google Scholar 

  8. M. D. Atkinson and R. Westwik, “Spaces of linear transformations of equal rank,” Linear and Multilinear Algebra, 13, 231–239 (1983).

    Google Scholar 

  9. P. Bala and R. W. Carter, “Classes of unipotent elements in simple algebras. I,” Math. Proc. Camb. Phil. Soc., 79, 401–425 (1976).

    Google Scholar 

  10. P. Bala and R. W. Carter, “Classes of unipotent elements in simple algebras. II,” Math. Proc. Camb. Phil. Soc., 80, 1–18 (1976).

    Google Scholar 

  11. E. Ballico and L. Chiantini, “On smooth subcanonical varieties of codimension 2 in ℙn, n ≥ 4,” Ann. Mat. Pure Appl., 135:4, 99–117 (1983).

    Google Scholar 

  12. F. Bardelli, “The Sylvester pentahedron and some applications to moduli spaces,” preprint.

  13. W. Barth, “Transplantingcohomolog y class in complex projective space,” Amer. J. Math., 92, 951–961 (1970).

    Google Scholar 

  14. W. Barth and K. Hulek, “Monads and moduli of vector bundles,” Man. Math., 25, 323–347 (1978).

    Google Scholar 

  15. L. B. Beasley, “Null spaces of matrices of bounded rank,” in: Current Trends in Matrix Theory (R. Grone and F. Uhlig, Eds.), North-Holland, Amsterdam (1987), pp. 45–50.

    Google Scholar 

  16. A. Beauville, “Fano contact manifolds and nilpotent orbits,” Comm. Math. Helv., 73:4, 566–583 (1998).

    Google Scholar 

  17. N. D. Beklemishev, “Classification of quaternary cubic forms not in general position,” in: Voprosy teorii grupp i gomologicheskoy algebry [in Russian], Yaroslavl (1981).

  18. M. C. Beltrametti, M. L. Fania, and A. J. Sommese, “On the discriminant variety of a projective manifold,” Forum Math, 4, 529–547 (1992).

    Google Scholar 

  19. M. C. Beltrametti, M. L. Fania, and A. J. Sommese, “On the adjunction theoretic classification of projective varieties,” Math. Ann., 290, 31–62 (1991).

    Google Scholar 

  20. M. C. Beltrametti and A. J. Sommese, “The adjunction theory of complex projective varieties,” Expositions in Math., 16, W. de Gruyter, Berlin (1995).

    Google Scholar 

  21. M. C. Beltrametti, A. J. Sommese, and J. A. Wiśniewski, “Results on varieties with many lines and their applications to adjunction theory”, in: Proceedings of the Bayreuth Conference “Complex Algebraic Varieties,” April 1990. Lect. Notes Math. 1507, Springer (1992), pp. 16–38.

    Google Scholar 

  22. G. M. Bergman, “The diamond lemma for ring theory,” Adv. in Math., 29/2, 178–218 (1978).

    Google Scholar 

  23. I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, “Schubert cells and the cohomology of G/P,” Usp. Mat. Nauk, 28/3, 3–26 (1973).

    Google Scholar 

  24. E. Bertini, Introduzione alla Geometria Proiettriva degli Iperspazi, Enrico Spaerri, Pisa (1907).

    Google Scholar 

  25. R. Bott, “Homogeneous vector bundles,” Ann. Math., 66/2, 203–248 (1957).

    Google Scholar 

  26. N. Bourbaki, Groupes et Algébres de Lie, Hermann, Paris (1968).

    Google Scholar 

  27. M. Brion, “Représentations exceptionnelles des groupes semi-simples,” Ann. Sci. Ecole. Norm. Sup., 18, 345–387 (1985).

    Google Scholar 

  28. A. Broer, “Line bundles on the cotangent bundle of the flag variety,” Invent. Math., 113, 1–20 (1993).

    Google Scholar 

  29. A. Broer, “Normality of some nilpotent varieties and cohomology of line bundles on the cotangent bundle of flagv ariety,” in: Lie Theory and Geometry. In Honor of Bertram Kostant. Progress in Math. Birkhäuser, Boston, 123 (1994), pp. 1–19.

    Google Scholar 

  30. A. Cayley, “On the theory of elimination,” in: Collected Papers Vol. 1, Cambridge Univ. Press (1889), pp. 370–374.

    Google Scholar 

  31. A. Cayley, “On the theory of linear transformations,” in: Collected Papers Vol. 1, Cambridge Univ. Press (1889), pp. 80–94.

    Google Scholar 

  32. A. Cayley, “On linear transformations,” in: Collected Papers Vol. 1, Cambridge Univ. Press (1889), pp. 95–112.

    Google Scholar 

  33. T. Cecil and P. Ryan, “Focal sets and real hypersurfaces in complex projective space,” Trans. Amer. Math. Soc., 269 (1982).

  34. H. Clemens, J. Kollar, and S. Mori, “Higher dimensional complex geometry,” Asterisque, 166 (1988).

  35. D. Collingwood and W. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold (1993).

  36. C. De Concini and J. Weiman, “A formula with nonnegative terms for the degree of the dual variety of a homogeneous space,” Proc. AMS, 125:1, 1–8 (1997).

    Google Scholar 

  37. L. Degoli, “Due Nouvi Teoremi Sui Sistemi Lineari Di Quadriche A Jacobiana Identicamente Nulla,” Collect. Math., 35, 125–139 (1984).

    Google Scholar 

  38. P. Deligne, “Le déterminant de la cohomologie,” In: Current trends in arithmetic algebraic geometry, Contemporary Math., No. 67, Amer. Math. Soc. (1987), pp. 93–177.

    Google Scholar 

  39. P. Deligne and N. Katz, “Groupes de monodromie en geometrie algebrique,” Lect. Notes Math. 340, Springer (1973).

  40. A. Dimca, “Milnor numbers and multiplicities of dual varieties,” Rev. Roumaine Math. Pures, 535–538 (1986).

  41. A. Dimca, “Topics on real and complex singularities,” Vieweg Advanced Lectures (1987).

  42. R. Donagi, “On the geometry of Grassmanians,” Duke Math. J., 44, 795–837 (1977).

    Google Scholar 

  43. L. Ein, “Varieties with small dual varieties, I,” Invent. Math., 86, 63–74 (1986).

    Google Scholar 

  44. L. Ein, “Varieties with small dual varieties, II,” Duke. Math. J., 52, 895–907 (1985).

    Google Scholar 

  45. L. Ein, “Stable vector bundles on projective space in char p > 0,” Math. Ann., 254, 53–72 (1980).

    Google Scholar 

  46. L. Ein, “The ramification divisors for branched coverings of ℙ nk ,” Math. Ann., 261, 483–485 (1982).

    Google Scholar 

  47. L. Ein and N. Shepherd-Barron, “Some special Cremona transformations,” Amer. J. Math., 111, 783–800 (1989).

    Google Scholar 

  48. D. Eisenbud and J. Harris, “Vector spaces of matrices of low rank,” Adv. Math., 70, 135–155 (1988).

    Google Scholar 

  49. A. G. Elashvili, “Canonical form and stationary subalgebras of points of general position for simple linear Lie groups,” Functional Anal. Appl., 6, 44–53 (1972).

    Google Scholar 

  50. A. G. Elashvili, “Stationary subalgebras of points of general position for irreducible linear Lie groups,” Functional Anal. Appl., 6, 139–148 (1972).

    Google Scholar 

  51. G. Elencwajg, A. Hirschowitz, and M. Schneider, “Les fibres uniformes de rang au plus n sur ℙn(ℂ),” in: Proceedings of the Nice Conference 1979 on Vector Bundles and Differential Equations.

  52. B. Fantechi, “On the superadditivity of secant defects,” Bull. Soc. Math. France, 118, 85–100 (1990).

    Google Scholar 

  53. E. Fisher, “¨Uber die Cayleyshe Eliminationsmethode,” Math. Zeit., 26, 497–550 (1927).

    Google Scholar 

  54. L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton Univ. Press, Princeton, NJ (1962).

    Google Scholar 

  55. W. Franz, “Die torsion einer Ñberdeckung,” J. Reine angew. Math., 173, 245–254 (1935).

    Google Scholar 

  56. H. Freudenthal, “Beziehungen der E 7 und E 8 zur Oktavenebene I-XI,” Nederl. Akad. Wet., Proc., 57, 218–230, 363–368 (1954); 58, 151–157, 277–285 (1955); 62, 165–179, 180–191, 192–201, 447–465, 466–474 (1959); 66, 457–471, 472–487 (1963).

    Google Scholar 

  57. H. Freudenthal, “Lie groups in the foundation of geometry,” Adv. Math., 1, 145–190 (1964).

    Google Scholar 

  58. G. Fubini, “Il problema della deformazione proiettiva delle ipersuperficie,” Rend. Acad. Naz. Lincei, 27, 147–155 (1918).

    Google Scholar 

  59. T. Fujita, “Projective threefolds with small secant varieties,” Sci. Papers College of General Education. Univ. Tokio, 32:1, 33–46 (1982).

    Google Scholar 

  60. T. Fujita and J. Roberts, “Varieties with small secant varieties: the extremal case,” Amer. J. Math., 103, 953–976 (1981).

    Google Scholar 

  61. W. Fulton, “Intersection theory,” Ergebnisse der Mathematik 2, Springer (1984).

  62. W. Fulton, “On the topology of algebraic varieties,” Proc. Symp. Pure Math., 46, 15–46 (1987).

    Google Scholar 

  63. W. Fulton and J. Hansen, “A connectedness theorem for projective varieties, with applications,” Ann. Math., 110:1, 159–166 (1979).

    Google Scholar 

  64. W. Fulton and R. Lazarsfeld, “Connectivity and its applications in algebraic geometry,” in: Proc. Midwest Algebraic Geometry Conf. Univ. Illinois, 1980. Lect. Notes Math., Springer-Verlag, Berlin– Heidelberg–New York, 862 (1981), pp. 26–92.

    Google Scholar 

  65. W. Fulton and R. Lazarsfeld, “On the connectedness of degeneracy loci and special divisors,” Acta Math., 146, 271–283 (1981).

    Google Scholar 

  66. P. Gabriel, “Unzerlegbare Darstellungen, I,” Manuscripta Math., 6, 71–103 (1972).

    Google Scholar 

  67. F. R. Gantmacher, The Theory of Matrices Vol. 2, Chelsea, New York (1959).

  68. I. M. Gelfand and M. M. Kapranov, “On the dimension and degree of projectively dual varieties: a q- analogue of the Katz–Kleiman formula,” in: Gelfand Mathematical Seminars 1990–1992, Birkhaüser (1993), pp. 27–34.

  69. I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinski, “A-discriminants and the Cayley–Koszul complexes,” Dokl. Akad. Nauk SSSR, 307, 1307–1311 (1989).

    Google Scholar 

  70. I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinski, Discriminants, Resultants, andMultidimensional Determinants, Birkhauser, Boston (1994).

    Google Scholar 

  71. I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinski, “Hyperdeterminants,” Adv. Math., 84, 237–254 (1990).

    Google Scholar 

  72. N. Goldstein, “Ampleness and connectedness in complex G/P,” Trans. AMS, 274, 361–374 (1982).

    Google Scholar 

  73. H. Grauert and O. Rimenschneider, Verschwindungssätze für Annalische Kogomologiegruppen auf Komplexen Räumen, Inv. Math., 11, 263–292 (1970).

    Google Scholar 

  74. P. Griffiths and J. Harris, “Algebraic geometry and local differential geometry,” Ann. Sci. Ecole. Norm. Super., 12, 355–432 (1979).

    Google Scholar 

  75. P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, London–New York (1979).

    Google Scholar 

  76. J. Harris and L. W. Tu, “The connectedness of symmetric degeneracy loci: Odd ranks,” in: Topics in Algebra: Banach Center Publications, Vol. 26, Part 2, PWN-Polish Scientific Publishers, Warsaw (1990), pp. 249–256.

    Google Scholar 

  77. J. Harris and L. W. Tu, “On symmetric and skew-symmetric determinantal varieties,” Topology, 23, 71–84 (1984).

    Google Scholar 

  78. R. Hartshorne, “Algebraic geometry,” in: Graduate Texts in Mathematics, 52, Springer-Verlag, New York–Heidelberg–Berlin (1977).

    Google Scholar 

  79. R. Hartshorne, “Varieties of low codimension in projective space,” Bull. Amer. Math. Soc., 80, 1017–1032 (1974).

    Google Scholar 

  80. R. Hartshorne, “Ample vector bundles,” IHES Publ. Math., 29, 63–94 (1966).

    Google Scholar 

  81. A. Hefez and S. Kleiman, “Notes on duality for projective varieties,” in: Geometry Today, Int. Conf., Rome 1984, Prog. Math., 60 (1985), pp. 143–183.

    Google Scholar 

  82. W. Hesselink, “Singularities in the nilpotent scheme of a classical group,” Trans. Amer. Math. Soc., 222, 1–32 (1976).

    Google Scholar 

  83. L. Hille and G. Röhrle, “A classification of parabolic subgroups of classical groups with a finite number of orbits on the unipotent radical,” Transformation Groups, 4:1, 35–52 (1999).

    Google Scholar 

  84. F. Hirzebruch, “Topological methods in algebraic geometry,” Grund. Math. Wiss. 131, Springer-Verlag(1966).

  85. W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Cambridge University Press, Cambridge (1994).

    Google Scholar 

  86. A. Holme, “On the dual of the smooth variety,” Lect. Notes Math., 732 (1979), Springer-Verlag, pp. 144–156.

    Google Scholar 

  87. A. Holme, “The geometric and numerical properties of duality in projective algebraic geometry,” Manuscripta Math., 61, 145–162 (1988).

    Google Scholar 

  88. A. Holme and J. Roberts, “Pinch points and multiple locus for generic projections of singular varieties,” Adv. Math., 33, 212–256 (1979).

    Google Scholar 

  89. B. Ilic and J. M. Landsberg, “On symmetric degeneracy loci, spaces of symmetric matrices of constant rank and dual varieties,” Math. Ann., 314, 159–174 (1999).

    Google Scholar 

  90. P. Ionescu, “An enumeration of all smooth projective varieties of degree 5 and 6,” Increst Preprint Series Math., 74 (1981).

  91. N. Jacobson, “Structure and representations of Jordan algebras,” Publ. Amer. Math. Soc., 39 (1968).

  92. H. Kaji, M. Ohno, and O. Yasukura, “Adjoint varieties and their secant varieties,” Indag. Math., 10, 45–57 (1999).

    Google Scholar 

  93. I. L. Kantor, “Models of exceptional Lie algebras,” Sov. Math. Dokl., 14, 254–258 (1973).

    Google Scholar 

  94. V. V. Kashin, “Orbits of adjoint and coadjoint actions of Borel subgroups of semisimple algebraic groups,” in: Problems in Group Theory and Homological Algebra [in Russian], Yaroslavl' (1997), pp. 141–159.

  95. N. Katz, “Pinceaux de Lefschetz; Theoreme d'existence,” in: SGA 7, Lect. Notes Math., 340, 212–253.

  96. Y. Kawamata, K. Matsuda, and K. Matsuki, “Introduction to the minimal model program,” in: Algebraic Geometry, Sendai 1985. Adv. Stud. Pure Math., 10, 283–360 (1987).

    Google Scholar 

  97. Y. Kawamata, “The cone of curves of algebraic varieties,” Ann. Math, 119, 603–633 (1984).

    Google Scholar 

  98. G. Kempf, “On the collapsingof homogeneous bundles,” Invent. Math., 37, 229–239 (1976).

    Google Scholar 

  99. S. Kleiman, “Enumerative theory of singularities,” in: Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pp. 297–396.

  100. S. Kleiman, “About the conormal scheme,” in: Complete intersections, Proceedings of Acireale (1983), Lect. Notes Math., 1092, Springer (1984), pp. 161–197.

    Google Scholar 

  101. S. Kleiman, “Tangency and duality,” in: Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, July 2–12, 1984, ed. by J. Carrell, A. V. Geramita, and R. Russell. Canadian Math. Soc. Conference Proceedings 6 (1986), pp. 163–225.

  102. S. Kleiman, “Concerning the dual variety,” in: Proc. 18th Scand. Congr. Math. Aarhus, 1981, Birkhäuser Verlag, Basel–Boston–Stuttgart, pp. 386–396.

    Google Scholar 

  103. S. Kleiman, “Plane forms and multiple point formulas,” in: Algebraic Threefolds (Varenna, 1981), pp. 287–310, Lect. Notes Math., 947 (1982).

    Google Scholar 

  104. S. Kleiman, “Toward a numerical theory of ampleness,” Ann. Math, 84, 293–344 (1966).

    Google Scholar 

  105. K. Knight and A. Zelevinsky, “Representations of quivers of type A and the multisegment duality,” Adv. Math, 117, 273–293 (1996).

    Google Scholar 

  106. F. Knop and G. Menzel, “Duale Varietäten von Fahnenvarietäten,” Comm. Math. Helv., 62, 38–61 (1987).

    Google Scholar 

  107. F. Knudsen and D. Mumford, “Projectivity of moduli spaces of stable curves I. Preliminaries on Det and Div,” Math. Scand., 39, 19–55 (1976).

    Google Scholar 

  108. S. Kobayashi and T. Ochiai “Characterization of complex projective spaces and hyperquadrics,” J. Math. Kyoto Univ., 13:1, 31–47 (1973).

    Google Scholar 

  109. Y. Kollar, “The structure of algebraic threefolds. An introduction to Mori's program,” Bull. AMS, 17:2, 211–273 (1987).

    Google Scholar 

  110. B. Kostant, “Lie group representations on polynomial rings,” Amer. J. Math., 86, 327–402 (1963).

    Google Scholar 

  111. H. Kraft and C. Procesi, “On the conjugacy classes in classical groups,” Comment. Math. Helvetici, 57, 539–602 (1982).

    Google Scholar 

  112. H. Kraft, “Closures of conjugacy classes in G 2,” J. Algebra, 126, 454–465 (1989).

    Google Scholar 

  113. A. Kumpera and D. Spencer, “Lie Equations, Vol. 1: General Theory,” Ann. Math. Stud., 73 (1972), Princeton University Press.

  114. I. Lamotke, “The topology of complex projective varieties after S. Lefschetz,” Topology, 20, 15–51 (1981).

    Google Scholar 

  115. A. Landman, “Examples of varieties with small dual varieties. Picard–Lefschetz theory and dual varieties,” Two lectures at Aarhus Univ. (1976).

  116. J. M. Landsberg, “On degenerate secant and tangential varieties and local differential geometry,” Duke Math. J., 85, 605–634 (1996).

    Google Scholar 

  117. J. M. Landsberg, “Differential–geometric characterization of complete intersections,” J. Diff. Geom., 44, 32–73 (1996).

    Google Scholar 

  118. J. M. Landsberg, “On second fundamental form of projective varieties,” Invent. Math., 117, 303–315 (1994).

    Google Scholar 

  119. J. M. Landsberg, “On degenerate secant and tangential varieties and local differential geometry,” Duke Math. J., 85, 1–30 (1996).

    Google Scholar 

  120. J. M. Landsberg, “Algebraic geometry and projective differential geometry,” preprint (1998).

  121. J. M. Landsberg and L. Manivel, “On the projective geometry of homogeneous varieties,” preprint (2000).

  122. A. Lanteri and M. Palleschi, “Projective manifolds containing many rational curves,” Indiana Math. J., 36, 857–865 (1987).

    Google Scholar 

  123. A. Lanteri, M. Palleschi, and A. J. Sommese, “Discriminant loci of varieties with smooth normalization,” Comm. Algebra, 28, 4179–4200 (2000).

    Google Scholar 

  124. A. Lanteri and D. Struppa, “Projective 7-folds with positive defect,” Compositio Math., 61, 329–337 (1987).

    Google Scholar 

  125. M. E. Larsen, “On the topology of complex projective manifolds,” Invent. Math., 19, 251–260 (1972).

    Google Scholar 

  126. A. Lascoux, “Degree of the dual Grassman variety,” Comm. Algebra, 9/11, 1215–1225 (1981).

    Google Scholar 

  127. R. Lazarsfeld, “An example of 16-dimensional projective variety with a 25-dimensional secant variety,” Math. Letters, 7, 1–4 (1981).

    Google Scholar 

  128. R. Lazarsfeld, “Some applications of the theory of positive vector bundles,” in: LNM 1092, Complete Intersections (Acireale 1983), Springer-Verlag, Berlin (1984), pp. 29–61.

    Google Scholar 

  129. R. Lazarsfeld and A. Van de Ven, “Topics in the Geometry of Projective Space, Recent Work of F.L. Zak,” DMV Seminar, Birkhauser (1984).

  130. W. Lichtenstein, “A system of quadrics describing the orbit of the highest weight vector,” Proc. A.M.S., 84, 605–608 (1982).

    Google Scholar 

  131. Yu. I. Manin, Cubic Forms. Algebra, Geometry, Arithmetic [in Russian], Nauka, Moscow (1972); English transl.: North-Holland, Amsterdam–London (1974).

  132. H. Matsumura and P. Monsky, “On the automorphisms of hypersurfaces,” J. Math. Kyoto Univ., 3:3, 347–361 (1964).

    Google Scholar 

  133. R. Meshulam, “On two-parameter families of symmetric matrices,” Lin. Alg. Appl., 216, 93–96 (1995).

    Google Scholar 

  134. J. Milnor, “Singular points of complex hypersurfaces,” Ann. Math. Studies 61, Princeton Univ. Press (1968).

  135. C. Moeglin and J. L. Waldspurger, “Sur l'involution de Zelevinski,” J. Reine Angew. Math, 372, 136–177 (1986).

    Google Scholar 

  136. B. G. Moishezon, “Algebraic homology classes of algebraic varieties,” Izv. AN SSSR, 31 (1967).

  137. E. H. Moore, “General analysis – Part I,” Mem. Amer. Phil. Soc., 1 (1935).

  138. S. Mori, “Threefolds whose canonical bundle is not numerically effective,” Ann. Math., 116, 133–176 (1982).

    Google Scholar 

  139. S. Mori, “Projective manifolds with ample tangent bundle,” Ann. Math., 110, 593–606 (1979).

    Google Scholar 

  140. S. Mukai, “New classification of Fano threefolds and Fano manifolds of coindex 3,” preprint (1988).

  141. I. Muller, H. Rubenthaler, and G. Schiffmann, “Structure des espaces préhomogènes associés à certaines algébres de Lie graduées,” Math. Ann., 274, 95–123 (1986).

    Google Scholar 

  142. D. Mumford, “Some footnote of the work of C.P. Ramanujam,” in: C.P. Ramanujam, a Tribute, pp. 247–262, Springer (1978).

  143. D. Mumford, Complex Projective Varieties, Springer-Verlag, Berlin–Heidelberg–New York (1979).

    Google Scholar 

  144. D. Mumford, J. Fogarty, and F. Kirwan, “Geometric Invariant Theory,” Ergebnisse der Mathematik und Grenzgebiete, Vol. 34, Springer-Verlag, New York–Heidelberg–Berlin, (3rd edition) (1994).

    Google Scholar 

  145. R. Muñoz, “Varieties with low dimensional dual variety,” Manuscripta Math., 94, 427–435 (1997).

    Google Scholar 

  146. R. Muñoz, “Varieties with almost maximal defect,” Rend. Classe di Scienze Mat. e Nat., 133 fasc. 1 (1999) dell'Instituto Lombardo Accad. di Scienze e Lettere, 103–114

    Google Scholar 

  147. R. Muñoz, “Varieties with degenerate dual variety,” Forum Math., 13, 757–779 (2001).

    Google Scholar 

  148. J. Nagura, “On the interval containing at least one prime number,” Proc. Japan Acad., 28, 177–181 (1952).

    Google Scholar 

  149. A. Némethi, “Lefschetz theory for complex hypersurfaces,” Rev. Roumaine Math. Pures, 233–250 (1988).

  150. C. Okonek, H. Spindler, and M. Schneider, “Vector bundles on complex projective spaces,” Prog. Math., 3, Basel–Boston, Birkhäuser (1980).

    Google Scholar 

  151. A. L. Onischik and E. B. Vinberg, "Lie groups and Lie algebras III," Encyclopedia of Mathematical Sciences 41, Springer–Verlag (1994).

  152. D.I. Panyushev, "Parabolic subgroups with abelian unipotent radical as a testing site for invariant theory," Can. J. Math., 51:3, 616–635 (1999).

    Google Scholar 

  153. A. Parusinski, "A generalization of the Milnor number," Math. Ann., 281, 247–254 (1988).

    Google Scholar 

  154. A. Parusinski, "Multiplicity of the dual variety," Bull. London Math. Soc., 23, 428–436 (1991).

    Google Scholar 

  155. C. Pauly, "Self-duality of Coble's quartic hypersurface and applications," preprint.

  156. R.A. Penrose, "A generalized inverse for matrices," Proc. Camb. Phil. Soc., 51 (1955).

  157. R. Piene, "Plücker formulas," Doctoral thesis, M.I.T. Cambridge, MA (1976).

    Google Scholar 

  158. S. Poljak, "Maximum rank of powers of a matrix of a given pattern," Proc. Amer. Math. Soc., 106:4, 1137–1144 (1989).

    Google Scholar 

  159. V. Popov, "Self-dual algebraic varieties and nilpotent orbits," in: Proceedings of the International Colloquium "Algebra, Arithmetic, andGeometry," Tata Institute of Fundamental Research, Bombay, (2001) pp. 496–520.

  160. V. Popov and G. Röhrle, "On the number of orbits of a parabolic subgroup on its unipotent radical," in: Algebraic Groups and Lie Groups, G.I. Lehrer, Ed., Austr. Math. Soc. Lecture Series, 9 (1997).

  161. V. L. Popov and E. B. Vinberg, "Invariant Theory," in: Algebraic Geometry IV, Encyclopedia of Mathematical Sciences, Springer-Verlag, 55 (1994), pp. 123–278.

    Google Scholar 

  162. V.S. Pyasetskii, "Linear Lie groups acting with finitely many orbits," Funct. Anal. Appl., 9, 351–353 (1975).

    Google Scholar 

  163. D. Quillen, "Determinants of Cauchy–Riemann operators on Riemann surfaces," Funct. Anal. Appl., 19, 31–34 (1985).

    Google Scholar 

  164. N. Ray and I. Singer, "R-torsion and the Laplacian for Riemannian manifolds," Adv. Math., 7, 145–210 (1971).

    Google Scholar 

  165. Z. Ran, "The (dimension+2)-secant lemma," Invent. Math., 106, 65–71 (1991).

    Google Scholar 

  166. Z. Ran, "On projective varieties of codimension two," Invent. Math., 73, 333–336 (1983).

    Google Scholar 

  167. Z. Ran, "The structure of Gauss-like maps," Compos. Math., 52, 171–177 (1984).

    Google Scholar 

  168. R.W. Richardson, "Finiteness theorems for orbits of algebraic groups," Indag. Math., 88, 337–344 (1985).

    Google Scholar 

  169. R.W. Richardson, "Conjugacy classes of n-tuples in Lie algebras and algebraic groups," Duke Math. J., 57, 1–35 (1988).

    Google Scholar 

  170. R.W. Richardson, G. Röhrle, and R. Steinberg, "Parabolic subgroups with abelian unipotent radical," Invent. Math., 110, 649–671 (1992).

    Google Scholar 

  171. J. Roberts, "Generic projections of algebraic varieties," Amer. J. Math., 93, 191–214 (1971).

    Google Scholar 

  172. E. Rogora, "Varieties with many lines," Man. Math., 82, 207–226 (1994).

    Google Scholar 

  173. T. Room, "A synthesis of Clifford matrices and its generalization," Amer. J. Math., 74, 967–984 (1952).

    Google Scholar 

  174. B. Rosenfeld, "Geometry of Lie groups," Mathematics and Its Applications 393, Kluwer Academic (1997).

  175. W. Rudin, Real and Complex Analysis, McGraw-Hill (1987).

  176. E. Sato, "Uniform vector bundles on a projective space," J. Math. Soc. Japan, 28, 123–132 (1976).

    Google Scholar 

  177. L. Schläffli, "Gesammelte Abhandlungen," Band. 2, pp. 9–112, Birkhäuser Verlag, Basel (1953).

    Google Scholar 

  178. B. Segre, "Bertini forms and hessian matrices," L. London Math. Soc., 26, 164–176 (1951).

    Google Scholar 

  179. D. Snow, "The nef value and defect of homogeneous line bundles," Trans. AMS, 340:1, 227–241 (1993).

    Google Scholar 

  180. D. Snow, "On the ampleness of homogeneous vector bundles," Trans. AMS, 294:2, 227–241 (1986).

    Google Scholar 

  181. A.J. Sommese, "Hyperplane section of projection surface I — the adjunction mapping," Duke Math. J., 46, 377–401 (1979).

    Google Scholar 

  182. A. Sommese, "Submanifolds of abelian varieties," Math. Ann., 233, 229–256 (1978).

    Google Scholar 

  183. J. Sylvester, "On the dimension of spaces of linear transformations satisfyingrank conditions," Linear Algebra Appl., 76, 1–10 (1986).

    Google Scholar 

  184. R. Takagi, "On homogeneous real hypersurfaces in a complex projective space," Osaka J. Math., 10, 495–506 (1973).

    Google Scholar 

  185. H. Tango, "Remark on varieties with small secant varieties," Bul. Kyoto Univ. Ed. Ser. B, 60, 1–10 (1982).

    Google Scholar 

  186. Terracini, "Alcune questioni sugli spazi tangenti e osculatori ad una varieta, I, II, III," Societa dei Naturalisti e Matematici, 214–247 (1913).

  187. E. Tevelev, "Subalgebras and discriminants of anticommutative algebras," Izv. RAN, Ser. Mat., 63:3, 169–184 (1999).

    Google Scholar 

  188. E. Tevelev, "Generic algebras," Transformation Groups, 1, 127–151 (1996).

    Google Scholar 

  189. E. Tevelev, "Isotropic subspaces of multilinear forms," Mat. Zametki, 2001.

  190. E. Tevelev, "Moore–Penrose inverse, parabolic subgroups, and Jordan pairs," preprint (2000).

  191. E. Tevelev, "Generic algebras," PhD Thesis

  192. E. Tevelev, "Discriminants and quasi-derivations of commutative algebras," Usp. Mat. Nauk, 54:2, 189–190 (1999).

    Google Scholar 

  193. L.W. Tu, "The connectedness of symmetric and skew symmetric degeneracy loci: even ranks," Trans. AMS, 313, 381–392 (1989).

    Google Scholar 

  194. A. Van de Ven, "On the 2-connectedness of the very ample divisor on a surface," Duke Math. J., 46, 403–407 (1979).

    Google Scholar 

  195. E.B. Vinverg, "The Weil group of a graded Lie algebra," Math. USSR Izv., 10, 463–495 (1976).

    Google Scholar 

  196. E.B. Vinberg, "Generalized derivations of algebras," AMST ransl., 163, 185–188 (1995).

    Google Scholar 

  197. A.H. Wallace, "Tangency and duality over arbitrary fields," Proc. London Math. Soc., 6:3, 321–342 (1956).

    Google Scholar 

  198. A. Weil, "Foundations of algebraic geometry," A.M.S. Colloquium Publ., 29, Providence, R.I. (1962).

  199. R. Westwick, "Spaces of matrices of fixed rank," Linear and Multilinear Algebra, 20, 171–174 (1987).

    Google Scholar 

  200. R. Westwick, "Spaces of matrices of fixed rank, II," Linear Algebra Appl., 235, 163–169 (1996).

    Google Scholar 

  201. J. Weyman, "Calculating discriminants by higher direct images," Trans. Amer. Math. Soc., 343, 367–389 (1994).

    Google Scholar 

  202. J. Weyman and A. Zelevinsky, "Singularities of Hyperdeterminants," Ann. Inst. Fourier, 46:3, 591–644 (1996).

    Google Scholar 

  203. J. Weyman and A. Zelevinsky, "Multiplicative properties of projectively dual varieties," Manuscripta Math., 82:2, 139–148 (1994).

    Google Scholar 

  204. J. Weyman and A. Zelevinsky, "Determinantal formulas for multigraded resultants," J. Alg. Geom., 3, 569–597 (1994).

    Google Scholar 

  205. P. Wilson, "Towards birational classification of algebraic varieties," Bull. London Math. Soc., 19, 1–48 (1987).

    Google Scholar 

  206. J. A. Wiśniewski, "Length of extremal rays and generalized adjunction," Math. Z., 200, 409–427 (1989).

    Google Scholar 

  207. J. A. Wiśniewski, "On a conjecture of Mukai," Manuscripta Math., 68, 135–141 (1990).

    Google Scholar 

  208. F. L. Zak, "Projection of algebraic varieties," Mat. Sb., 116, 593–602 (1981); English Transl.: Math. USSR Sb., 44, 535–544 (1983).

    Google Scholar 

  209. F. L. Zak, "Severi varieties," Mat. Sb., 126, 115–132 (1985).

    Google Scholar 

  210. F. L. Zak, "The structure of Gauss maps," Funct. Anal. Prilozh., 21, 39–50 (1987).

    Google Scholar 

  211. F. L. Zak, "Tangents and secants of algebraic varieties," Translations of Math. Monographs, 127, AMS (1993).

  212. F. L. Zak, "Linear systems of hyperplane sections of varieties of low codimension," Funct. Anal. Prilozh., 19, 165–173 (1985).

    Google Scholar 

  213. F. L. Zak, "Some properties of dual varieties and their applications in projective geometry," in: Algebraic Geometry, LNM 1479, pp. 273–280, Springer-Verlag, New York (1991).

    Google Scholar 

  214. O. Zariski, "Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields," Mem. A.M.S., No. 5, Providence, R.I. (1951).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tevelev, E.A. Projectively Dual Varieties. Journal of Mathematical Sciences 117, 4585–4732 (2003). https://doi.org/10.1023/A:1025366207448

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025366207448

Keywords

Navigation