Skip to main content
Log in

Tishchenko Reaction Over Solid Base Catalysts

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Catalytic behavior of solid bases for mixed Tishchenko reaction in which an equimolar mixture of two different aldehydes is allowed to react was investigated employing the combinations of benzaldehyde and pivalaldehyde, pivalaldehyde and cyclopropanecarbaldehyde, and cyclopropanecarbaldehyde and benzaldehyde. The reactions were performed at 353 K for 4 h in vacuo without solvent using 5 mmol of each aldehyde and 100 mg of solid base catalyst. For all the combinations, the catalytic activity of alkaline earth oxides increased in the order of BaO≪MgO<CaO<SrO, implying that strongly basic site and high surface area are indispensable for exhibiting high activity. Treatment of benzaldehyde and pivalaldehyde with other solid bases such as La2O3, ZrO2, ZnO, γ-alumina, hydrotalcite, KF/alumina, and KOH/alumina produced either no amount or very small amounts of cross-esterification and self-esterification products. Quantum chemical calculations carried out at the PM3-MO level for the positive charges on the carbonyl carbon atoms of aldehydes and the structure parameters of the active species for the ester formations indicated that the selectivities to four Tishchenko dimers over MgO and CaO are determined primarily in the step of the nucleophilic addition of the active species (PhCH2O-, tBuCH2O-, and C3H5CH2O-) to the carbonyl carbon atoms of aldehydes. The reaction of the aldehyde having more positively charged and sterically less hindered carbonyl carbon atom with the active species having less hindered oxygen atom proceeds faster.

We also attempted the application of solid base catalysts to the challenging Tishchenko reaction of furfural, and excellent results were obtained with CaO and SrO. For instance, when furfural (10 mmol) was treated with SrO (100 mg) without solvent at 353 K for 6 h in vacuo, almost quantitative conversion to the corresponding ester was accomplished. Furthermore, application of SrO to the Tishchenko reaction of 3-furaldehyde was carried out successfully. The catalytic systems were also successfully applicable to the intramolecular Tishchenko reaction (lactonization) of o-phthalaldehyde to phthalide. For example, treatment of o-phthalaldehyde (1 mmol) with CaO (50 mg) in benzene (1 mL) solvent at 313 K under N2 produced phthalide quantitatively in a short time of 15 min. We finally refer to the perspective of application of solid base catalysts to Tishchenko reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For the use of traditional aluminum alkoxides as catalysts, see: W. Tischtschenko, Chem. Zentralbl. 77, I (1906) 1309

    Google Scholar 

  2. W. C. Child and H. Adkins, J. Am. Chem. Soc. 47 (1925) 798

    Google Scholar 

  3. F. J. Villani and F. F. Nord, J. Am. Chem. Soc. 69 (1947) 2605

    Google Scholar 

  4. L. Lin and A. R. Day, J. Am. Chem. Soc. 74 (1952) 5133

    Google Scholar 

  5. T. Saegusa and T. Ueshima, J. Org. Chem. 33 (1968) 3310

    Google Scholar 

  6. Y. Ogata and A. Kawasaki, Tetrahedron 25 (1969) 929.

    Google Scholar 

  7. For the use of advanced homogeneous catalysts, see: P. R. Stapp, J. Org. Chem. 38 (1973) 1433

    Google Scholar 

  8. M. Yamashita, Y. Watanabe, T. Mitsudo and Y. Takegami, Bull. Chem. Soc. Jpn. 49 (1976) 3597

    Google Scholar 

  9. T. Ito, H. Horino, Y. Koshiro and A. Yamamoto, Bull. Chem. Soc. Jpn. 55 (1982) 504

    Google Scholar 

  10. M. Yamashita and T. Ohishi, Appl. Organomet. Chem. 7 (1993) 357

    Google Scholar 

  11. K. Morita, Y. Nishiyama and Y. Ishii, Organometallics 12 (1993) 3748

    Google Scholar 

  12. S. Onozawa, T. Sakakura, M. Tanaka and M. Shiro, Tetrahedron 52 (1996) 4291

    Google Scholar 

  13. T. Ooi, T. Miura, K. Takaya and K. Maruoka, Tetrahedron Lett. 40 (1999) 7695

    Google Scholar 

  14. M. R. Burgstein, H. Berberich and P. W. Roesky, Chem. Eur. J. 7 (2001) 3078.

    Google Scholar 

  15. K. Tanabe and K. Saito, J. Catal. 35 (1974) 247.

    Google Scholar 

  16. H. Handa, T. Baba, H. Sugisawa and Y. Ono, J. Mol. Catal. 134 (1998) 171.

    Google Scholar 

  17. H. Kabashima, H. Tsuji, S. Nakata, Y. Tanaka and H. Hattori, Appl. Catal. 194–195 (2000) 227.

    Google Scholar 

  18. For reviews, see: H. Hattori, Chem. Rev. 95 (1995) 537

    Google Scholar 

  19. Y. Ono and T. Baba, Catal. Today 38 (1997) 321

    Google Scholar 

  20. H. Hattori, Appl. Catal. 222 (2001) 247.

    Google Scholar 

  21. K. Tanabe, M. Misono, Y. Ono and H. Hattori, New Solid Acids and Bases (Kodansha: Tokyo; Elsevier: Amsterdam, Oxford, New York, Tokyo, 1989).

    Google Scholar 

  22. T. Seki, H. Kabashima, K. Akutsu, H. Tachikawa and H. Hattori, J. Catal. 204 (2001) 393.

    Google Scholar 

  23. G. Zhang, H. Hattori and K. Tanabe, Appl. Catal. 36 (1988) 189.

    Google Scholar 

  24. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople, Ab-initio MO Calculation Program: Gaussian'98, Revision A. 9 (Gaussian Inc., Pittsburgh, PA, 1998).

    Google Scholar 

  25. T. Seki, K. Akutsu and H. Hattori, Chem. Commun. 11 (2001) 1000.

    Google Scholar 

  26. S. H. Bergens, D. P. Fairlie and B. Bosnich, Organometallics 9 (1990) 566.

    Google Scholar 

  27. T. Seki and H. Hattori, Chem. Commun. 23 (2001) 2510.

    Google Scholar 

  28. For instance, see: Q. Dang, B. S. Brown, P. D. van Poelje, T. J. Colby and M. D. Erion, Bioorg. Med. Chem. Lett. 9 (1999) 1505

    PubMed  Google Scholar 

  29. P. Allevi, A. Longo and M. Anastasia, Tetrahedron 55 (1999) 4167

    Google Scholar 

  30. R. Bentley, Chem. Rev. 100 (2000) 3801

    PubMed  Google Scholar 

  31. S. Hayat, A-u-Rahman, M. I. Choudhary, K. M. Khan and E. Bayer, Tetrahedron Lett. 42 (2001) 1647and references therein

    Google Scholar 

  32. T. Kawasaki, S. Saito and Y. Yamamoto, J. Org. Chem. 67 (2002) 2653and references therein.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideshi Hattori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seki, T., Hattori, H. Tishchenko Reaction Over Solid Base Catalysts. Catalysis Surveys from Asia 7, 145–156 (2003). https://doi.org/10.1023/A:1025385524728

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025385524728

Navigation