Skip to main content
Log in

Class Numbers of Indefinite Binary Quadratic Forms

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let \(h(d)\) be the class number of properly equivalent primitive binary quadratic forms \(ax^2 + bxy + cy^2\) of discriminant \(d = b^2 a - 4ac\). The case of indefinite forms \((d < 0)\) is considered. Assuming that the extended Riemann hypothesis for some fields of algebraic numbers holds, the following results are proved. 1. Let \(\alpha (x)\) be an arbitrarily slow monotonically increasing function such that \(\alpha (x) \to \infty\). Then

$$\# \left\{ {p \leqslant \left. x \right|{\text{ }}\left( {\frac{{\text{5}}}{p}} \right) = 1,h(5p^2 ) >(\log p)^{\alpha (p)} } \right\} = o(\pi (x)),$$

where \(\pi (x) = \# \{ p \leqslant x\}\). 2. Let F be an arbitrary sufficiently large positive constant. Then for \(x >x_F\), the relation

$$\# \left\{ {p \leqslant \left. x \right|{\text{ }}\left( {\frac{{\text{5}}}{p}} \right) = 1,h(5p^2 ) >F} \right\} \asymp \frac{{\pi (x)}}{F}$$

holds. 3. The relation

$$\# \left\{ {p \leqslant \left. x \right|{\text{ }}\left( {\frac{{\text{5}}}{p}} \right) = 1,h(5p^2 ) = 2} \right\} \sim \frac{9}{{19}}A\pi (x)$$

holds, where A is Artin's constant. Hence, for the majority of discriminants of the form \(d = 5p^2\), where \({\left( {\frac{{\text{5}}}{p}} \right) = 1}\) , the class numbers are small. This is consistent with the Gauss conjecture concerning the behavior of \(h(d)\) for the majority of discriminants \(d >0\) in the general case. Bibliography: 22 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C.F. Gauss,“Disquisitiones Arithmeticae,”in:C.F.Gauss,Works on Number Theory [Russian translation],Moscow (1959),pp.7–583.

  2. E.P. Golubeva,“On the lengths of periods of expansion of quadratic irrationalities into continued fractions and the class numbers of real quadratic number elds.I,II,”Zap.Nauchn.Semin.LOMI,160,72–81(1987);168,11–22 (1988).

  3. C. Hooley,“On the Pellian equation and the class number of inde nite binary quadratic forms,”J.reine angew.Math.,353,98–131(1984).

  4. E.P. Golubeva,“On indefinite binary quadratic forms with a large class number,”Zap.Nauchn.Semin.POMI,185,13–21(1990).

  5. M. Goldfeld,“On the number of primes p for which p +a has a large prime factor,”Mathematika,16,23–27(1969).

    Google Scholar 

  6. P.C. Sarnak,“Class numbers of indefinite binary quadratic forms.II,”J.Number Theory 21,333–346(1985).

  7. E.P. Golubeva,“On class numbers of real quadratic elds of discriminant 4 p,”Zap.Nauchn.Semin.POMI,204,11–36(1993).

  8. C. Hooley,“On Artin 's conjecture,”J.reine angew.Math.,225,209–220(1967).

  9. P.J. Stephens,“Prime divisors of second-order linear recurrences.I,II,”J.Number Theory 8,313–332;333–345 (1976).

  10. H.W. Lenstra Jr.,“On Artin 's conjecture and Euclid 's algorithm in global elds,”Invent.Math.,42,201–224(1977).

    Google Scholar 

  11. S.S. Wagsta Jr.,“Pseudoprimes and a generalization of Artin 's conjecture,”Acta Arithm.,41,141–150(1982).

    Google Scholar 

  12. J.A. Antoniadis,“¨Uber die Periodenl ¨ange mod p einer Klasse rekursiver Folgen,”Arch.Math.,42,242–252(1984).

  13. L. Murata,“A problem analogous to Artin 's conjecture for primitive roots and its applications,”Arch.Math.,57,555–565(1991).

    Google Scholar 

  14. F. Pappalardi,“On Hooley 's theorem with weights,”Rendiconti Sem.Mat.Univ.Pol.Torino,53,375–388(1995).

    Google Scholar 

  15. P. Bundschuh and J.-S. Shiue,“A generalization of a paper by D.D.Wall,”Rendiconti Accad.Naz.Lincei.Ser.8,56,135–144(1974).

    Google Scholar 

  16. P.J. Weinberger,“On Euclidean rings of algebraic integers,”Analytic Number Theory.Proc.Symp.Pure Math.,24,Providence,R.I.,321–332(1973).

  17. J.C. Lagarias and A.M. Odlyzko,“Effective versions of the Chebotarev density theorem,”in:Algebraic Number Fields,New York (1977),pp.409–464.

  18. B.A. Venkov,Elementary Number Theory [in Russian],Moscow-Leningrad (1937).

  19. Z.I. Borevich and I.R. Shafarevich,Number Theory [in Russian],Moscow (1985).

  20. E. Bach, R. Lukes, J. Shallit,and H.C. Williams,“Results and estimates on pseudopowers,”Math.Comp.,65,1737–1747(1996).

    Google Scholar 

  21. M.B. Barban,“Multiplicative functions of Ó R-uniformly distributed sequences,”Izv.Akad.Nauk Uzb.SSR,Ser.Fiz.Mat.,No.6,13–19(1964).

  22. K. Prachar,Primzahlverteilung [Russian translation],Moscow (1967).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomenko, O.M. Class Numbers of Indefinite Binary Quadratic Forms. Journal of Mathematical Sciences 118, 4918–4932 (2003). https://doi.org/10.1023/A:1025589004026

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025589004026

Keywords

Navigation