Skip to main content
Log in

Integration of transgenes into sexual polyploidization schemes for potato (Solanum tuberosum L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Most potato transgenic research has focused on development of resistance to pathogens and modification of potato physiology. Many transgenes, particularly those conferring pathogen resistance, could substantially lower potato production costs in developing countries. However, transgenes have not been reported in sexually propagated 4x-2x potato hybrids commonly grown in developing countries. Two transgenes,the Bacillus thuringiensis cry3Aa endotoxin protein gene and the PVY°coat protein gene, were engineered intodiploid and tetraploid potato using Agrobacterium tumefaciens-mediated transformation. Cry3Aa was produced at high levels in several lines while the PVY° coat protein was not expressed. Diplandroid and tetraploid genotypes were crossed to produce transgenic 4x-2x hybrids. Genetic transformation had no discernable effect on fertility ofthe primary transformants, germination of4x-2x seed derived from the transformants and agronomic performance(tuber set, average tuber weight and total tuber yield) of the 4x-2xhybrids. The transgenic 4x-2xhybrids produced non-viable pollen and could only be crossed as female parents. Results suggest that transgenes, such ascry3Aa, could be expressed in 4x-2x hybrids to lower costs of production with no significant effect on plant phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahrenholtz, I., K. Harms, J. de Vries & W. Wackernagel, 2000. Increased killing of Bacillus subtilis on the hair roots of transgenic T4 lysozyme-producing potatoes. Appl Environ Microbiol 66: 1862–1865.

    Article  PubMed  CAS  Google Scholar 

  • Allefs, S.J.H.M., D. Florack, C. Hoogendoorn & W.J. Stiekema, 1995. Erwinia soft-rot resistance of potato cultivars transformed with a gene construct coding for antimicrobial peptide cecropin-B is not altered. Am Potato J 72: 437–445.

    CAS  Google Scholar 

  • Arce, P., M. Moreno, M. Gutierrez, M. Gebauer, P. Dell'Orto, H. Torres, I. Acuna, P. Oliger, A. Venegas, X. Jordana, J. Kalazich & L. Holuigue, 1999. Enhanced resistance to bacterial infection by Erwinia carotovora subsp. atroseptica in transgenic potato plants expressing the attacin or the cecropin SB-37 genes. Am J Potato Res 76: 169–177.

    CAS  Google Scholar 

  • Barker, H., B. Reavy & K.D. McGeachy, 1998. High level of resistance in potato to potato mop-top virus induced by transformation with the coat protein gene. Eur J Plant Pathol 104: 737–740.

    Article  CAS  Google Scholar 

  • Barker, H., B. Reavy, K.D. McGeachy & S. Dawson, 1999. A unique form of transgenic resistance to potato mop-top virus induced by transformation with the coat protein gene. Phyton 39: 47–50.

    CAS  Google Scholar 

  • Bell, H.A., E.C. Fitches, R.E., Down, G.C. Marris, J.P. Edwards, J.A. Gatehouse & A.M.R. Gatehouse, 1999. The effect of snowdrop lectin (GNA) delivered via artificial diet and transgenic plants on Eulophus pennicornis (Hymenoptera: Eulophidae), a parasitoid of the tomato moth Lacanobia oleracea (Lepidoptera: Noctuidae). J Insect Physiol 45: 983–991.

    Article  PubMed  CAS  Google Scholar 

  • Bell, H.A., E.C. Fitches, G.C. Marris, J. Bell, J.P. Edwards, J.A. Gatehouse & A.M.R. Gatehouse, 2001a. Transgenic GNA expressing potato plants augment the beneficial biocontrol of Lacanobia oleracea (Lepidoptera; Noctuidae) by the parasitoid Eulophus pennicornis (Hymenoptera; Eulophidae). Transgenic Res 10: 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Bell, H.A., E.C. Fitches, R.E. Down, L. Ford, G.C. Marris, J.P. Edwards, J.A. Gatehouse & A.M.R. Gatehouse, 2001b. Effect of dietary cowpea trypsin inhibitor (CpTI) on the growth and development of the tomato moth Lacanobia oleracea (Lepidoptera: Noctuidae) and on the success of the gregarious ectoparasitoid Eulophus pennicornis (Hymenoptera: Eulophidae). PestMan Sci 57: 57–65.

    Article  CAS  Google Scholar 

  • Birch, A.N.E., I.E. Geoghegan, I.E., M.E.N. Majerus, J.W. Mc-Nicol, C.A. Hackett, A.M.R. Gatehouse & J.A. Gatehouse, 1999. Tri-trophic interactions involving pest aphids, predatory 2-spot ladybirds and transgenic potatoes expressing snowdrop lectin for aphid resistance. Mol Breed 5: 75–83.

    Article  Google Scholar 

  • Bregitzer, P., S.E. Halbert & P.G. Lemaux, 1998. Somaclonal variation in the progeny of transgenic barley. Theor Appl Genet 96: 421–425.

    Article  Google Scholar 

  • Chakrabarti, S.K., A.D. Mandaokar, A. Shukla, D. Pattanayak, P.S. Naik, R.P. Sharma & P.A. Kumar, 2000. Bacillus thuringiensis cry1Ab gene confers resistance to potato against Helicoverpa armigera (Hubner). Potato Res 43: 143–152.

    Article  CAS  Google Scholar 

  • Chan, M.T., L.J. Chen & H.H. Chang, 1996. Expression of Bacillus thuringiensis (Bt) insecticidal crystal protein gene in transgenic potato. Bot Bull Acad Sinica 37: 17–23.

    CAS  Google Scholar 

  • Dale, P.J. & H.C. McPartlan, 1992. Field performance of transgenic potato plants compared with controls regenerated from tuber discs and shoot cuttings. Theor Appl Genet 84: 585–591.

    Article  Google Scholar 

  • Derrick, P.M. & H. Barker, 1997. Short and long distance spread of potato leafroll luteovirus: Effects of host genes and transgenes conferring resistance to virus accumulation in potato. J Gen Virol 78: 243–251.

    PubMed  CAS  Google Scholar 

  • Dongmei, X., G.B. Collins, A.G. Hunt & M.T. Nielsen, 1999. Agronomic performance of transgenic burley tobaccos expressing TVMV or AMV coat protein genes with and without virus challenge. Crop Sci 39: 1195–1202.

    Article  Google Scholar 

  • Edwards, A., D.C. Fulton, C.M. Hylton, S.A. Jobling, M. Gidley, U. Rossner, C. Martin & A.M. Smith, 1999. A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers. Plant J 17: 251–261.

    Article  CAS  Google Scholar 

  • Elmayan, T. & H. Vaucheret, 1996. Expression of single copies of a strongly expressed 35S transgene can be silenced posttranscriptionally. Plant J 9: 787–797.

    Article  CAS  Google Scholar 

  • Flipse, E., I. StraatmanEngelen, A.G.J. Kuipers, E. Jacoben & R.G.F. Visser, 1996. GBSS T-DNA inserts giving partial complementation of the amylose-free potato mutant can also cause co-suppression of the endogenous GBSS gene in a wild-type background. Plant Mol Biol 31: 731–739.

    Article  PubMed  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations/International Potato Center. Potatoes in the 1990s. Situation and Prospects of the World Potato Economy. Rome, 1995.

    Google Scholar 

  • Franco-Lara, L.F., D.K. McGeachy, U. Commandeur, R.R. Martin, M.A. Mayo & H. Barker, 1999. Transformation of tobacco and potato with cDNA encoding the full-length genome of potato leafroll virus: evidence for a novel virus distribution and host effects on virus multiplication. J Gen Virol 80: 2813–2822.

    PubMed  CAS  Google Scholar 

  • Gao, A.G., S.M. Hakimi, C.A. Mittanck, Y. Wu, B.M. Woerner, D.M. Stark, D.M. Shah, J.H. Liang & C.M.T. Rommens, 2000.Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature Biotechol 18: 1307–1310.

    Article  CAS  Google Scholar 

  • Gatehouse, A.M.R., R.E. Down, K.S. Powell, N. Sauvion, Y. Rahbe, C.A. Newell, A. Merryweather, W.D.O. Hamilton & J.A. Gatehouse, 1996. Transgenic potato plants with enhanced resistance to the peach-potato aphid Myzus persicae. Entomol Exp Appl 79: 295–307.

    Article  Google Scholar 

  • Gatehouse, A.M.R., G.M. Davison, J.N. Stewart, L.N. Gatehouse, A. Kumar, I.E. Geoghegan, A.N.E. Birch & J.A. Gatehouse, 1999. Concanavalin A inhibits development of tomato moth (Lacanobia oleracea) and peach-potato aphid (Myzus persicae) when expressed in transgenic potato plants. Mol Breed 5: 153–165.

    Article  CAS  Google Scholar 

  • Gleave, A.P., D.S. Mitra, N.P. Markwick, B.A.M. Morris & L.L. Beuning, 1998. Enhanced expression of the Bacillus thuringiensis cry9Aa2 gene in transgenic plants by nucleotide sequence modification confers resistance to potato tuber moth. Mol Breed 4: 459–472.

    Article  CAS  Google Scholar 

  • Golmirzaie, A.M., R. Ortiz, G.N. Atlin & M. Iwanaga, 1998. Inbreeding and true seed in tetrasomic potato. 1. Selfing and open pollination in andean landraces (Solanum tuberosum Gp. Andigena). Theor Appl Genet 97: 1125–1128.

    Article  Google Scholar 

  • Graeber, J.V., E.D. Nafziger & D.W. Mies, 1999. Evaluation of transgenic, Bt-containing corn hybrids. J Prod Agric 12: 659–663.

    Google Scholar 

  • Graffius, E., 1997. Economic impact of insecticide resistance in the Colorado potato beetle (Coleoptera: Chrysomelidae) on the Michigan potato industry. J Econ Entomol 90: 1144–1151.

    Google Scholar 

  • Griffiths, G., M. Leverentz, H. Silkowski, N. Gill & J.J. Sanchez-Serrano, 2000. Lipid hydroperoxide levels in plant tissues. J Exp Bot 51: 1363–1370.

    Article  PubMed  CAS  Google Scholar 

  • Haffani, Y.Z., S. Overney, S. Yelle, G. Bellemare & F.J. Belzile, 2000. Premature polyadenylation contributes to the poor expression of the Bacillus thuringiensis cry3Ca1 gene in transgenic potato plants. Mol Gen Genet 264: 82–88.

    Article  PubMed  CAS  Google Scholar 

  • Harms, K., P. von Ballmoos, C. Brunold, R. Höfgen & H. Hesse, 2000. Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione. Plant J 22: 335–343.

    Article  PubMed  CAS  Google Scholar 

  • Hassairi, A., K. Masmoudi, J. Albouy, C. Robaglia, M. Jullien & R. Ellouz, 1998. Transformation of two potato cultivars 'Spunta' and 'Claustar' (Solanum tuberosum) with lettuce mosaic virus coat protein gene and heterologous immunity to potato virus Y. Plant Sci 136: 31–42.

    Article  CAS  Google Scholar 

  • Hefferon, K.L., H. Khalilian & M.G. AbouHaidar, 1997. Expression of the PVY(O) coat protein (CP) under the control of the PVX CP gene leader sequence: protection under greenhouse and field conditions against PVY(O) and PVY(N) infection in three potato cultivars. Theor Appl Genet 94: 287–292.

    Article  CAS  Google Scholar 

  • Heineke, D., N. Bykova, P. Gardestrom & H. Bauwe, 2001. Metabolic response of potato plants to an antisense reduction of the P-protein of glycine decarboxylase. Planta 212: 880–887.

    Article  PubMed  CAS  Google Scholar 

  • Horvath, H., L.G. Jensen, O.T. Wong, E. Kohl, S.E. Ullrich, J. Cochran, C.G. Kannangara & D. von Wettstein, 2001. Stability of transgene expression, field performance and recombination breeding of transformed barley lines. Theor Appl Genet 102: 1–11.

    Article  CAS  Google Scholar 

  • Jansens, S., M. Cornelissen, R. de Clercq, A. Reynaerts & M. Peferoen, 1995. Phthorimaea operculella (Lepidoptera: Gelechiidae) resistance in potato by expression of the Bacillus thurinigiensis CryIA(b) insecticidal crystal protein. J Econ Entomol 88: 1469–1476.

    Google Scholar 

  • Jobling, S.A., G.P. Schwall, R.J. Westcott, C.M. Sidebottom, M. Debet, M.J. Gidley, R. Jeffcoat & R. Stafford, 1999. A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterisation of multiple forms of SBE A. Plant J 18: 163–171.

    Article  PubMed  CAS  Google Scholar 

  • Kawchuk, L.M., D.R. Lynch, R.R. Martin, G.C. Kozub & B. Farries, 1997. Field resistance to the potato leafroll luteovirus in transgenic and somaclone potato plants reduces tuber disease symptoms. Can J Plant Pathol 19: 260–266.

    Article  Google Scholar 

  • Korth, K.L., D.A.W. Jaggard & R.A. Dixon, 2000. Developmental and light-regulated post-translational control of 3-hydroxy-3-methylglutaryl-CoA reductase levels in potato. Plant J 23: 507–516.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, A., M.A. Taylor, S.A.M. Arif & H.V. Davies, 1996. Potato plants expressing antisense and sense S-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: Antisense plants display abnormal phenotypes. Plant J 9: 147–158.

    Article  CAS  Google Scholar 

  • Li, W., K.A. Zarka, D.S. Douches, J.J. Coombs, W.L. Pett & E.J. Grafius, 1999. Coexpression of potato PVY? coat protein and cryV-Bt genes in potato. J Am Soc Hort Sci 124: 218–223.

    CAS  Google Scholar 

  • Lorito, M., S.L. Woo, I. Garcia-Fernandez, G. Colucci, G.E. Harman, J.A. Pintor-Toro, E. Filippone, S. Muccifora, C.B. Lawrence & A. Zoina, 1998. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95: 7860–7865.

    Article  PubMed  CAS  Google Scholar 

  • Maimann, S., C. Wagner, O. Kreft, M. Zeh, L. Willmitzer, R. Hofgen & H. Hesse, 2000. Transgenic potato plants reveal the indispensable role of cystathionine beta-lyase in plant growth and development. Plant J 23: 747–758.

    Article  PubMed  CAS  Google Scholar 

  • Maki-Valkama, T., T. Pehu, A. Santala, J.P.T. Valkonen, K. Koivu, K. Lehto & E. Pehu, 2000. High level of resistance to potato virus Y by expressing P1 sequence in antisense orientation in transgenic potato. Mol Breed 6: 95–104.

    Article  CAS  Google Scholar 

  • Marmiroli, N., C. Agrimonti, G. Visioli, M. Colauzzi, G. Guarda & A. Zuppini, 2000. Silencing of G1–1 and A2–1 genes. Effects on general plant phenotype and on tuber dormancy in Solanum tuberosum L. Potato Res 43: 313–323.

    Article  CAS  Google Scholar 

  • Meza, T.J., D. Kamfjord, A.M. Håkelien, I. Evans, L.H. Godager, A. Mandal, K.S. Jakobsen & R.B. Aalen, 2001. The frequency of silencing in Arabidopsis thaliana varies highly between progeny of siblings and can be influenced by environmental factors. Transgenic Res 10: 53–67.

    Article  PubMed  CAS  Google Scholar 

  • Mohammed, A., D.S. Douches, W. Pett, E. Grafius, J. Coombs, L.W. Liswidowati & M.A. Madkour, 2000. Evaluation of potato tuber moth (Lepidoptera: Gelechiidae) resistance in tubers of Bt-cry5 transgenic potato lines. J Econ Entomol 93: 472–476.

    Article  PubMed  CAS  Google Scholar 

  • Murashige T. & F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497.

    Article  CAS  Google Scholar 

  • Okamoto, D., S.V.S. Nielsen, M. Albrechtsen & B. Borkhardt, 1996. General resistance against potato virus Y introduced into a commercial potato cultivar by genetic transformation with PVYN coat protein gene. Potato Res 39: 271–282.

    Article  CAS  Google Scholar 

  • Owen, H.R., R.E. Veilleux, D. Levy & D.L. Ochs, 1988. Environmental, genotypic, and ploidy effects on endopolyploidization within a genotype of Solanum phureja and its derivatives. Genome 30: 506–510.

    Google Scholar 

  • Palucha, A., W. Zagorski, M. Chrzanowska & D. Hulanicka, 1998. An antisense coat protein gene confers immunity to potato leafroll virus in a genetically engineered potato. Eur J Plant Pathol 104: 287–293.

    Article  CAS  Google Scholar 

  • Pehu, T.M., T.K. Makivalkonen, J.P.T. Valkonen, K.T. Koivu, K.M. Lehto & E.P. Pehu, 1995. Potato plants transformed with a potato-virus YP1 gene sequence are resistant to PVY-degrees. Am Potato J 72: 523–532.

    CAS  Google Scholar 

  • Perl, A., R. Perltreves, S. Galili, D. Aviv, E. Shalgi, S. Malkin & E. Galun, 1993. Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu,Zn superoxide dismutases. Theor Appl Genet 85: 568–576.

    Article  CAS  Google Scholar 

  • Purcell, P.C., A.M. Smith & N.G. Halford, 1998. Antisense expression of a sucrose non-fermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves. Plant J 14: 195–202.

    Article  CAS  Google Scholar 

  • Reed, G.L., A.S. Jensen, J. Riebe, G. Head & J.J. Duan, 2001. Transgenic Bt potato and conventional insecticides for Colorado potato beetle management: comparative efficacy and non-target impacts. Entomol Exptl Appl 100: 89–100.

    Article  CAS  Google Scholar 

  • Romanov, G.A., T.N. Konstantinova, L.I. Sergeeva, S.A. Golyanovskaya, J. Kossmann, L. Willmitzer, T. Schmulling & N.P. Aksenova, 1998. Morphology and tuber formation of in vitro grown potato plants harboring the yeast invertase gene and/or the rolC gene. Plant Cell Rep 18: 318–324.

    Article  CAS  Google Scholar 

  • SAS, 1985. SAS Users Guide: Statistics, Version 5 edn., SAS Institute, Inc., Cary, NC.

    Google Scholar 

  • Scheid, O.M., L. Jakovleva, K. Afsar, J. Maluszynska & J. Paszkowski, 1996. A change of ploidy can modify epigenetic silencing. Proc Natl Acad Sci USA 93: 7114–7119.

    Article  CAS  Google Scholar 

  • Serrano, C., P. Arce-Johnson, H. Torres, M. Gebauer, M. Gutierrez, M. Moreno, X. Jordana, A. Venegas, J. Kalazich & L. Holuigue, 2000. Expression of the chicken lysozyme gene in potato enhances resistance to infection by Erwinia carotovora subsp, Atroseptica. Am J Potato Res 77: 191–199.

    Article  CAS  Google Scholar 

  • Smith, H.A., H. Powers, S. Swaney, C. Brown & W.G. Dougherty, 1995. Transgenic potato-virus-Y resistance in potato-evidence for an RNA-mediated cellular-response. Phytopathology 85: 864–870.

    CAS  Google Scholar 

  • Spillane, C., D.C. Baulcombe & T.A. Kavanagh, 1998. Genetic engineering of the potato cultivar Glenroe for increased resistance to potato virus X (PVX). Irish J Agric Food Res 37: 173–182.

    Google Scholar 

  • Sutton, D.W., P.K. Havstad & J.D. Kemp, 1992. Synthetic cryIIIA gene from Bacillus thuringiensis improved for high expression in plants. Transgenic Res 5: 228–236.

    Google Scholar 

  • Sweetlove, L.J., B. Muller-Rober, L. Willmitzer & S.A. Hill, 1999. The contribution of adenosine 5'-diphosphoglucose pyrophosphorylase to the control of starch synthesis in potato tubers. Planta 209: 330–337.

    Article  PubMed  CAS  Google Scholar 

  • Thiele, A., M. Herold, I. Lenk, P.H. Quail & C. Gatz, 1999. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol 120: 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Trethewey, R.N., P. Geigenberger, K. Riedel, M.R. Hajirezaei, U. Sonnewald, M. Stitt, J.W. Riesmeier & L. Willmitzer, 1998. Combined expression of glucokinase and invertase in potato tubers leads to a dramatic reduction in starch accumulation and a stimulation of glycolysis. Plant J 15: 109–118.

    Article  CAS  PubMed  Google Scholar 

  • Tu, H.M., L.W. Godfrey & S.S.M. Sun, 1998. Expression of the Brazil nut methionine-rich protein and mutants with increased methionine in transgenic potato. Plant Mol Biol 37: 829–838.

    Article  PubMed  CAS  Google Scholar 

  • van Voorthuysen, T., B. Regierer, F. Springer, C. Dijkema, D. Vreugdenhil & J. Kossmann, 2000. Introduction of polyphosphate as a novel phosphate pool in the chloroplast of transgenic potato plants modifies carbohydrate partitioning. J Biotechnol 77: 65–80.

    Article  PubMed  CAS  Google Scholar 

  • Veilleux, R., 1985. Diploid and polyploid gametes in crop plants: mechanisms of formation and utilization in plant breeding. Plant Breed Rev 3: 253–288.

    Google Scholar 

  • Veramendi, J., U. Roessner, A. Renz, L. Willmitzer & R.N. Trethewey, 1999. Antisense repression of hexokinase 1 leads to an overaccumulation of starch in leaves of transgenic potato plants but not to significant changes in tuber carbohydrate metabolism. Plant Physiol 121: 123–133.

    Article  PubMed  CAS  Google Scholar 

  • Wolters, A.M.A., E.M. Janssen, M.G.M. Rozeboom-Schippers, E. Jacobsen & R.G.F. Visser, 1998. Composition of endogenous alleles can influence the level of antisense inhibition of granule-bound starch synthase gene expression in tetraploid potato plants. Mol Breed 4: 343–358.

    Article  CAS  Google Scholar 

  • Wu, G., B.J. Shortt, E.B. Lawrence, E.B. Levine, K.C. Fitzsimmons & D.M. Shah, 1995. Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7: 1357–1368.

    Article  PubMed  CAS  Google Scholar 

  • Yu, D., Z. Xie, C. Chen, B. Fan & Z. Chen, 1999. Expression of tobacco class II catalase gene activates the endogenous homologous gene and is associated with disease resistance in transgenic potato plants. Plant Mol Biol 39: 477–488.

    Article  PubMed  CAS  Google Scholar 

  • Zhen, W., X. Chen, H.B. Liang, Y.L. Hu, Y. Gao & Z.P. Lin, 2000. Enhanced late blight resistance of transgenic potato expressing glucose oxidase under the control of pathogen-inducible promoter. Chin Sci Bull 45: 1982.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, A.A., Veilleux, R.E. Integration of transgenes into sexual polyploidization schemes for potato (Solanum tuberosum L.). Euphytica 133, 125–138 (2003). https://doi.org/10.1023/A:1025644523574

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025644523574

Navigation