Skip to main content
Log in

The Influences of I h on Temporal Summation in Hippocampal CA1 Pyramidal Neurons: A Modeling Study

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Recent experimental and theoretical studies have found that active dendritic ionic currents can compensate for the effects of electrotonic attenuation. In particular, temporal summation, the percentage increase in peak somatic voltage responses invoked by a synaptic input train, is independent of location of the synaptic input in hippocampal CA1 pyramidal neurons under normal conditions. This independence, known as normalization of temporal summation, is destroyed when the hyperpolarization-activated current, I h, is blocked [Magee JC (1999a), Nature Neurosci. 2: 508–514]. Using a compartmental model derived from morphological recordings of hippocampal CA1 pyramidal neurons, we examined the hypothesis that I h was primarily responsible for normalization of temporal summation. We concluded that this hypothesis was incomplete. With a model that included I h, the persistent Na+ current (I NaP), and the transient A-type K+ current (I A), however, we observed normalization of temporal summation across a wide range of synaptic input frequencies, in keeping with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreasen M, Lambert JD (1999) Somatic amplification of distally generated subthreshold EPSPs in rat hippocampal pyramidal neurons. J. Physiol. 519: 85-100.

    Article  PubMed  Google Scholar 

  • Berger T, Larkum ME, Luscher HR (2001) High I (h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J. Neurophysiol. 85: 855-868.

    PubMed  Google Scholar 

  • Buzsaki G, Turner DA (1998) Dendritic properties of hippocampal CA1 pyramidal neurons in the rat: Intracellular staining in vivo and in vitro. J. Comp. Neurol. 391: 335-352.

    Article  PubMed  Google Scholar 

  • Cannon RC (1998a) cvapp: neuronal morphology viewer, editor and file converter. URL: http://www.cns.soton.ac.uk/~jchad/cellArchive/cellArchive.html.

  • Cannon RC, Turner DA, Pyapali GK, Wheal HV (1998b) An online archive of reconstructed hippocampal neurons. J. Neurosci. Methods 84: 49-54. URL: http://www.cns.soton.ac.uk/~jchad/ cellArchive/cellArchive.html.

    Article  PubMed  Google Scholar 

  • Cook EP, Johnston D (1999) Voltage-dependent properties of dendrites that eliminate location-dependent variability of synaptic input. J. Neurophysiol. 81: 535-543.

    PubMed  Google Scholar 

  • De Schutter E, Bower JM (1994) An active membrane model of the cerebellar Purkinje cell I. Simulation of current clamps in slice. J. Neurophysiol. 71: 375-400.

    PubMed  Google Scholar 

  • French CR, Sah P, Buckett KJ, Gage PW (1990) Avoltage-dependent persistent sodium current in mammalian hippocampal neurons. J. Gen. Physiol. 95: 1139-1157.

    Article  PubMed  Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput. 9: 1179-1209.

    PubMed  Google Scholar 

  • Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387: 869-875.

    Article  PubMed  Google Scholar 

  • Holmes WR, Rall W (1992) Electrotonic length estimates in neurons with dendritic tapering or somatic shunt. J. Neurophysiol. 68: 1421-1437.

    PubMed  Google Scholar 

  • Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J. Neurophysiol. 68: 1373-1383.

    PubMed  Google Scholar 

  • Johnston D, Hoffman DA, Magee JC, Poolos NP, Watanabe S, Colbert CM, Migliore M (2000) Dendritic potassium channels in hippocampal pyramidal neurons. J. Physiol. 525(1): 75-81.

    Article  PubMed  Google Scholar 

  • Johnston D, Magee JC, Colbert CM, Christie BR (1996) Active properties of neuronal dendrites. Ann. Rev. Neurosci. 19: 165-186.

    Article  PubMed  Google Scholar 

  • Koch C (1999) Biophysics of computation: Information processing in single neurons. Oxford University Press, Oxford.

    Google Scholar 

  • Lipowsky R, Gillessen T, Alzheimer C (1996) Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells. J. Neurophysiol. 76: 2181-2191.

    PubMed  Google Scholar 

  • Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18: 7613-7624.

    PubMed  Google Scholar 

  • Magee JC (1999a) Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nature Neurosci. 2: 508-514.

    Article  PubMed  Google Scholar 

  • Magee JC (1999b) Voltage-gated ion channels. In: G Stuart, N Spruston, M Hausser, eds. Dendrites. Oxford University Press, Oxford. pp. 139-160.

    Google Scholar 

  • Magee JC, Johnston D (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268: 301-304.

    PubMed  Google Scholar 

  • Migliore M, Hoffman DA, Magee JC, Johnston (1999) Role of an Atype K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J Comput. Neurosci. 7: 5-15.

    Article  PubMed  Google Scholar 

  • Pape H-C (1996) Queer current and pacemaker: The hyperpolarization-activated cation current in neurons. Ann. Rev. Physiol. 58: 299-327.

    Article  Google Scholar 

  • Rapp M, Yarom Y, Segev I (1992) The impact of parallel fiber background activity on the cable properties of cerebellar Purkinje cells. Neural Comput. 4: 518-533.

    Google Scholar 

  • Schwindt PC, Crill WE (1997) Modification of current transmitted from apical dendrite to soma by blockade of voltage-and Ca2+-dependent conductances in rat neocortical pyramidal neurons. J. Neurophysiol. 78: 187-198.

    PubMed  Google Scholar 

  • Segev I, London M (1999) A theoretical view of passive and active dendrites. In: G Stuart, N Spruston, M Hausser, eds. Dendrites. Oxford University Press, Oxford. pp. 205-230.

    Google Scholar 

  • Segev I, London M (2000) Untangling dendrites with quantitative models. Science 290: 744-750.

    Article  PubMed  Google Scholar 

  • Williams SR, Stuart GJ (2000) Site independence of EPSP time course is mediated by dendritic Ih in neocortical pyramidal neurons. J. Neurophysiol. 83: 3177-3182.

    PubMed  Google Scholar 

  • Yuste R, Tank DW (1996) Dendritic integration in mammalian neurons, a century after Cajal. Neuron 16: 701-716.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desjardins, A.E., Li, YX., Reinker, S. et al. The Influences of I h on Temporal Summation in Hippocampal CA1 Pyramidal Neurons: A Modeling Study. J Comput Neurosci 15, 131–142 (2003). https://doi.org/10.1023/A:1025881007453

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025881007453

Navigation