Skip to main content
Log in

SiOC Ceramic Foams through Melt Foaming of a Methylsilicone Preceramic Polymer

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A process for the production of SiOC ceramic foams has been for the first time developed through melt foaming of a siloxane preceramic polymer with the help of a blowing agent, followed by pyrolysis under an inert atmosphere. The raw material consisted of a methylsilicone resin, a catalyst (which accelerated the cross-linking reaction of the silicone resin) and a blowing agent (which generated gas above 210°C). Methylsilicone resin foams were obtained through controlling the melt viscosity around 210°C, temperature where the blowing agent started to decompose, by varying the initial molecular weight of the preceramic polymer and the amount of the catalyst. The obtained SiOC ceramic foams exhibited excellent oxidation stability up to 1000°C, as shown by thermal gravimetric analysis (TGA). As expected, the mechanical properties of the SiOC ceramic foams varied as a function of their bulk density, possessing a flexural strength up to 5.5 MPa and a compression strength up to 4.5 MPa. The main steps in the process, namely foaming and pyrolysis, were analyzed in detail. The viscosity change was analyzed as a function of temperature by the dynamic shear measurement method. The pyrolysis process of foams was analyzed by TGA coupled with infrared spectroscopy (IR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Baney and G. Chandra, Encyclopedia of Polymer Science and Engineering, Preceramic polymers (John Wiley &; Sons, New York, 1988), p. 312.

    Google Scholar 

  2. M. Takeda, A. Urano, J.-I. Sakamoto, and Y. Imai, J. Am. Ceram. Soc. 83, 1171 (2000).

    Google Scholar 

  3. S. Walter, D. Suttor, T. Erny, B. Hahn, and P. Greil, J. Eur. Ceram. Soc. 16, 387 (1996).

    Google Scholar 

  4. Z.S. Rak, J. Am. Ceram. Soc. 84, 2235 (2000).

    Google Scholar 

  5. P. Colombo and J.R. Hellmann, Mat. Res. Innovat. 6, 260 (2002).

    Google Scholar 

  6. X. Bao, M.R. Nangrejo, and M.J. Edirisinghe, J. Mater. Sci. 35, 4365 (2000).

    Google Scholar 

  7. T.J. Fitzgerald, V.J. Michaud, and A. Mortensen, J. Mater. Sci. 30, 1037 (1995).

    Google Scholar 

  8. P. Colombo and M. Modesti, J. Am. Ceram. Soc. 82, 573 (1999).

    Google Scholar 

  9. T. Gambaryan-Roisman, M. Scheffler, P. Buhler, and P. Greil, in Innovative Processing and Synthesis of Ceramics, Glasses, and Composites III, edited by J.P. Singh, N.P. Bansal, and K. Nihara, Ceramic Transactions, vol. 108 (The American Ceramic Society, Westerville, OH, 2000), p. 121.

    Google Scholar 

  10. Y.W. Kim, S.H. Kim, X. Xu, C.-H. Choi, C.B. Park, and H.-D. Kim, J. Mater. Sci. Lett. 21, 1667 (2002).

    Google Scholar 

  11. P. Colombo and E. Bernardo, Comp. Sci. Tech., in press.

  12. D. Klempner and K.C. Frisch, Polymeric Foams (Hanser Publishers, Munich, 1991), p. 191 and p. 257.

    Google Scholar 

  13. T. Takahashi, J. Kaschta, and H. Muenstedt, Rheol. Acta 40, 490 (2001).

    Google Scholar 

  14. M. Scheffler, T. Gambaryan-Roisman, T. Takahashi, J. Kaschta, H. Muenstedt, P. Buhler, and P. Greil, in Innovative Processing and Synthesis of Ceramics, Glasses, and Composites IV, edited by N.P. Bansal and J.P. Singh, Ceramic Transactions, vol. 115 (The American Ceramic Society, Westerville, OH, 2000), p. 239.

    Google Scholar 

  15. C.W. Macosko, Rheology (VCH Publishers, Inc., New York, 1994), p. 124.

    Google Scholar 

  16. H.H. Winter and F. Chambon, J. Rheol. 30, 367 (1986).

    Google Scholar 

  17. L.J. Bellamy, The Infrared Spectra of Complex Molecules (Chapman and Hall, London, UK, 1975).

    Google Scholar 

  18. G.R. Renlund, S. Prochazka, and R.H. Doremus, J. Mater. Res. 6, 2716 (1991); G.R. Renlund, S. Prochazka, and R.H. Doremus, J. Mater. Res. 6, 2723 (1991).

    Google Scholar 

  19. P. Colombo, J.R. Hellmann, and D.L. Shelleman, J. Am. Ceram. Soc. 84, 2245 (2001).

    Google Scholar 

  20. C.G. Pantano, A.K. Singh, and H.X. Zhang, J. Sol-Gel Sci. Technol. 14, 7 (1999).

    Google Scholar 

  21. L.J. Gibson and M.F. Ashby, Cellular Solids, Structure and Properties, 2nd edition (Cambridge University Press, Cambridge, UK, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, T., Colombo, P. SiOC Ceramic Foams through Melt Foaming of a Methylsilicone Preceramic Polymer. Journal of Porous Materials 10, 113–121 (2003). https://doi.org/10.1023/A:1026031729278

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026031729278

Navigation