Skip to main content
Log in

Preparation and Intercalation Reactions of Zn-Sn LDH and Zn-Al-Sn LDH

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Layered double hydroxide (LDH) is synthesized conventionally only with divalent and trivalent cations. In this study, Zn-Sn LDH consisting of di- and tetra-valent cations and Zn-Al-Sn LDH consisting of di-, tri- and tetra-valent cations were prepared and reacted with organic monocarboxylic, dicarboxylic and aromatic acids at 60°C. The 003 spacing of the prepared LDH (Zn-Sn-CO3) is 0.67 nm which is smaller compared to that of the usual LDH (Zn-Al-CO3) with 0.76 nm in the case of carbonate anion as the guest. Zn-Al-Sn-CO3 LDH has two 003 spacings i.e., 0.67 and 0.75 nm which belong to Zn-Sn-CO3 and Zn-Al-CO3 LDH, respectively. Analysis by DTA, TG and DTG indicated that the electrostatic force between the Zn-Sn layers and carbonate anions is larger than that of Zn-Al LDH. The carbonate anions in Zn-Sn LDH decomposed at 261°C while in the usual LDH they decomposed at 230–240°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Cavani, F. Trifiro, and A. Vaccari, Catal. Today 11, 173 (1991).

    Google Scholar 

  2. S.P. Newman and W. Jones, New J. Chem. 22, 105 (1998).

    Google Scholar 

  3. T. Takatsuka, H. Kawasaki, S. Yamashita, and S. Kohjiya, Bull. Chem. Soc. Jpn. 52, 2449 (1979).

    Google Scholar 

  4. S. Kohjiya, T. Sato, T. Nakayama, and S. Yamashita, Macromol. Rapid Commun. 2, 231 (1981).

    Google Scholar 

  5. W.T. Reichle, J. Catal. 94, 547 (1985).

    Google Scholar 

  6. E. Suzuki and Y. Ono, Bull. Chem. Soc. Jpn. 61, 1008 (1988).

    Google Scholar 

  7. H. Schaper, J.J. Berg-Slot, and W.H.J. Stork, Appl. Catal. 54, 79 (1989).

    Google Scholar 

  8. L. Barloy, J.P. Lallier, P. Battioni, D. Mansuy, Y. Piffard, M. Tournoux, J.B. Valim, and W. Jones, New J. Chem. 16, 71 (1992).

    Google Scholar 

  9. P.C. Pavan, G.D. Gomes, and J.B. Valim, Microporous Mesoporous Mater. 21, 659 (1998).

    Google Scholar 

  10. P.C. Pavan, E.L. Crepaldi, G.D. Gomes, and J.B. Valim, Colloids Surf. A 154, 399 (1999).

    Google Scholar 

  11. S. Miyata and T. Kumura, Chem. Lett. 843 (1973).

  12. M. Meyn, K. Beneke, and G. Lagaly, Inorg. Chem. 29, 5201 (1990).

    Google Scholar 

  13. A. Schmassmann, A. Tarnawski, B. Flogerzi, M. Sanner, L. Varga, and F. Halter, Eur. J. Gastroenterol. Hepatol. 5, S111 (1993).

    Google Scholar 

  14. J. Choy, S. Kwak, J. Park, Y. Jeong, and J. Portier, J. Am. Chem. Soc. 121, 1399 (1999).

    Google Scholar 

  15. A. Fogg, V. Green, H. Harvey, and D. O'Hare, Adv. Mater. 11, 1466 (1999).

    Google Scholar 

  16. H. Tagaya, S. Ogata, S. Nakano, J. Kadokawa, M. Karasu, and K. Chiba, J. Inclusion Phenomena. 31, 231 (1998).

    Google Scholar 

  17. S. Ogata, H. Tagaya, M. Karasu, J. Kadokawa, and K. Chiba, Trans. MRS-J. 24, 501 (1999).

    Google Scholar 

  18. S. Ogata, H. Tagaya, M. Karasu, and J. Kadokawa, J. Mater. Chem. 10, 321 (2000).

    Google Scholar 

  19. T. Takahashi, H. Adachi, J. Kadakawa, and H. Tagaya, Trans. Mater Res. Soc. Jpn. 26(2), 491 (2001).

    Google Scholar 

  20. H. Tagaya, S. Sato, T. Kuwahara, J. Kadokawa, M. Karasu, and K. Chiba, J. Mater. Chem. 4, 1907 (1994).

    Google Scholar 

  21. H. Tagaya, A. Ogata, T. Kuwahara, S. Ogata, M. Karasu, J. Kadokawa, and K. Chiba, Microporous Materials 7, 151 (1996).

    Google Scholar 

  22. H. Tagaya and S. Ogata, Function and Material 18, 33 (1998).

    Google Scholar 

  23. S. Ogata and H. Tagaya, J. Inclusion Phenomena 45, 107 (2003).

    Google Scholar 

  24. A. Roy, C. Forano, K. Elmalki, and J. Besse, in Expanded Clay and Other Microporous Solids, Synthesis of Microporous Materials, edited by M.L. Occelli, H. Robson, and V. Reinhold (New York, 1992), ch 7, p. 108.

  25. V. Rives and S. Kannan, J. Mater. Chem. 10, 489 (2000).

    Google Scholar 

  26. M.C. Gastuche, G. Brown, and M. Mortland, Clay Minerals 7, 172 (1967).

    Google Scholar 

  27. C. Busetto, G. Del Piero, and G. Manara, J. Catal. 85, 260 (1984).

    Google Scholar 

  28. R. Allmam and H.H. Lohse, N. Jhb. Miner. Mh. 6, 161 (1966).

    Google Scholar 

  29. F. Leroux, M. Adachi-Pagano, M. Intissar, S. Chauviere, C. Forano, and J. Besse, J. Mater. Chem. 11, 105 (2001).

    Google Scholar 

  30. P. Himelfarb, J. Catal. 93, 442 (1985).

    Google Scholar 

  31. Constantino and T. Pinnavaia, Inorg. Chem. 34(4), 883 (1995).

    Google Scholar 

  32. S. Yun and T. Pinnavaia, Chem. Mater. 7, 348 (1995).

    Google Scholar 

  33. A. Vaccari, Appl. Clay Sci. 14, 161 (1999).

    Google Scholar 

  34. F.M. Labajos, V. Rives, and M.A. Ulibarri, J. Mater. Sci. 27, 1546 (1992).

    Google Scholar 

  35. S. Miyata, Clays Clay Miner. 23, 369 (1995).

    Google Scholar 

  36. E.C. Kruissink, L.L. Van Reijden, and J.R.H. Ross, J. Chem. Soc.; Faraday Trans. 77(1), 649 (1991).

    Google Scholar 

  37. J. Perez-Ramirez, G. Mul, F. Kapteijin, and J.A. Moulijn, J. Mater. Chem. 11, 821 (2001).

    Google Scholar 

  38. N. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edition (John Wiley &; Sons, New York, 1986).

    Google Scholar 

  39. M.K. Titulaer, J.B.H. Jansen, and J.W. Geus, Clays Clay Miner. 42, 249 (1994).

    Google Scholar 

  40. T. Kanoh, T. Shichi, and K. Takagi, Chem. Lett. 117 (1999).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saber, O., Tagaya, H. Preparation and Intercalation Reactions of Zn-Sn LDH and Zn-Al-Sn LDH. Journal of Porous Materials 10, 83–91 (2003). https://doi.org/10.1023/A:1026046711532

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026046711532

Navigation