Skip to main content
Log in

Interaction of porphyrins with heme proteins – a brief review

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Two important porphyrins, protoporphyrin IX and hematoporphyrin IX, derivatives of which form the basis of photosensitization in the photodynamic therapy of cancer treatment, interact with two physiologically important heme proteins hemoglobin and myoglobin. The extent and modality of these interactions vary with the state of aggregation of the two porphyrins. Upon binding with these proteins, both the drugs change the protein conformations and release the heme-bound oxygen from the oxyproteins. At the same time, the peroxidase activities of these proteins are potentiated due to the protein-porphyrin complexation, as is found in case of horseradish peroxidase also. The effect of porphyrins on heme proteins should be given due consideration in elucidating the details of the mechanism of porphyrin actions in therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. West JB: In: Best and Taylor's Physiological Basis of Medical Practices, 11th edn. Williams and Wilkins, London, 1985, pp 546-571

    Google Scholar 

  2. Perutz MF, Muirhead H, Cox JM, Goaman LC: Three-dimensional Fourier synthesis of horse oxyhemoglobin at 2.8 A resolution: The atomic model. Nature 219: 131-139, 1968

    Google Scholar 

  3. Perutz MF: Mechanisms regulating the reactions of human hemoglobin with oxygen and carbon monoxide. Ann Rev Physiol 52: 1-25, 1990

    Google Scholar 

  4. Martin A, Swarbrick J, Cammarata A: In: Physical Pharmacy, 3rd edn. Virghese Publishing House, India, 1991, pp 314-351

    Google Scholar 

  5. Bhattacharyya J, Bhattacharyya M, Chakraborti AS, Chaudhuri U, Poddar RK: Interaction of chlorpromazine with myoglobin and hemoglobin — a comparative study. Biochem Pharmacol 47: 2049-2053, 1994

    Google Scholar 

  6. Bhattacharyya J, Bhattacharyya M, Chakraborti AS, Chaudhuri U, Poddar RK: Structural organisation of hemoglobin and myoglobin influence their binding with phenothiazines. Int J Biol Macromol 23: 11-18, 1998

    Google Scholar 

  7. Ascenzi P, Bertollini A, Coletta M, Lucacchini A: Stabilisation of the T-state of ferrous human adult haemoglobin by chlorpromazine and trifluoperazine. Biotechnol Appl Biochem 30: 185-187, 1999

    Google Scholar 

  8. Sil S, Chakraborti AS: Comparative studies on the interaction of protoporphyrin with hemoglobin and myoglobin. Ind J Biochem Biophys 33: 285-291, 1996

    Google Scholar 

  9. Ascenzi P, Colasanti M, Fasano M, Bertollini A: Stabilization of the T-state of human hemoglobin by proflavin, an antiseptic drug. Biochem Mol Biol Int 47: 991-995, 1999

    Google Scholar 

  10. Coletta M, Angeletti M, Ascenzi P, Bertollini A, Della Longa S, De Sanctis G, Priori AM, Santucci R, Amiconi G: Coupling of the oxygen-linked interaction energy for inositol hexakisphosphate and bezafibrate binding to human HbA0. J Biol Chem 274: 6865-6874, 1999

    Google Scholar 

  11. Ascenzi P, Bartollini A, Coletta M, Desideri A, Giardina B, Polizio F, Santucci R, Scatena R, Amiconi G: Cooperative effect of inositol hexakisphosphate, bezafibrate and clofibric acid on the spectroscopic properties of the nitric oxide derivative of ferrous human hemoglobin. J Inorg Biochem 50:263-272, 1993

    Google Scholar 

  12. Moan J, Berg K: Photochemotherapy of cancer: experimental research. Photochem Photobiol 55: 931-948, 1992

    Google Scholar 

  13. Peng Q, Warloe T, Berg K, Moan J, Kongshaug M, Gieresky KE, Nesland JM: 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges. Cancer 79: 2282-2308, 1997

    Google Scholar 

  14. Nseyo UO, Dettaven J, Dougherty TJ, Potter WR, Merrill DL, Lundahl SL, Lamm DL: Photodynamic therapy (PDT) in the treatment of patients with resistant superficial bladder cancer: A long-term experience. J Clin Laser Med Surg 16: 61-68, 1998

    Google Scholar 

  15. Lilge L, Wilson BC: Photodynamic therapy of intracranial tissues: A preclinical comparative study of four different photosensitizers. J Clin Laser Med Surg 16: 81-91, 1998

    Google Scholar 

  16. Nauta JM, Speelman OC, van Leengoed HL, Nikkels PG, Roodenburg JL, Star WM, Witjes MJ, Vermey AJ: In vivo photo-detection of chemically induced premalignancy lesions and squamous cell carcinoma of the rat palatal mucosa. J Photochem Photobiol B: Biol 39: 156-166, 1997

    Google Scholar 

  17. Dougherty TJ: Photodynamic therapy. Photochem Photobiol 58: 895-900, 1993

    Google Scholar 

  18. Stables GI, Ash DV: Photodynamic therapy. Cancer Treat Rev 21: 311-323, 1995

    Google Scholar 

  19. Jain V: Mechanisms and metabolic modulation of photosensitization. In: V. Jain, H. Goel (eds). Selected Topics in Photobiology. Indian Photobiological Society, New Delhi, 1992, pp 130-147

    Google Scholar 

  20. Dellinger M, Vever-Bizet C, Brault D, Delgado O, Rosenfeld C: Cellular uptake of hydroxyethylvinyldeuteroporphyrin (HVD) and photoactivation of cultivated human leukemia (REH6) cells. Photochem Photobiol 43: 639-647, 1986

    Google Scholar 

  21. Maziere JC, Santaus R, Morlier P, Reyftmann JP, Candida C, Mora L, Salmon S, Maziere C, Gatt S, Dubertet L: Cellular uptake and photosensitizing properties of anticancer porphyrins in cell membranes and low and high density lipoproteins. J Photochem Photobiol B: Biol 6: 61-68, 1990

    Google Scholar 

  22. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelic M, Moan J, Peng Q: Photodynamic therapy. J Natl Cancer Inst 90: 889-905, 1998

    Google Scholar 

  23. Tajiara H, Hayakawab A, Matsumotocy, Yokoyamad I, Yoshidaa S: Changes in intracellular Ca2+ concentrations related to PDT-induced apoptosis in photosensitized human cancer cells. Cancer Lett 128: 205-210, 1998

    Google Scholar 

  24. Khanum F, Jain V: Effects of photofrin II and light on cellular adenine nuclcotides and their modulation. Ind J Exp Biol 35: 356-360, 1997

    Google Scholar 

  25. Ricchelli F, Gobbo S, Jori C, Salet C, Moreno G: Temperature-induced changes in fluorescence properties as a probe of porphyrin microenvironment in lipid membranes. 2. The partition of hematoporphyrin and protoporphyrin in mitochondria. Eur J Biochem 233: 165-170, 1995

    Google Scholar 

  26. Reynolds T: Photodynamic therapy expands its horizons. J Natl Cancer Inst 89: 112-114, 1997

    Google Scholar 

  27. Fisher AM, Murphree AL, Gomer CJ: Clinical and preclinical photodynamic therapy. Lasers Surg Med 17: 2-31, 1995

    Google Scholar 

  28. He XY, Sikes RA, Thomas S, Chung LW, Jacques SL: Photodynamic therapy with photofrin II induces programmed cell death in carcinoma cell lines. Photochem Photobiol 59: 468-473, 1994

    Google Scholar 

  29. Ahmed N, Feyes DK, Agarwal R, Mukhter H: Photodynamic therapy results in induction of WAF1/CIP1/p21 leading to cell cycle arrest and apoptosis. Proc Natl Acad Sci USA 95: 6977-6982, 1998

    Google Scholar 

  30. Breitbart H, Malik Z: The effects of photoactivated protoporphyrin on reticulocyte membranes intracellular activities and hemoglobin precipitation. Photochem Photobiol 35: 365-369, 1982

    Google Scholar 

  31. Dadosh N, Shaklai N: Impairment of red cell membrane cytoskeleton by protoporphyrin IX: Light and dark effects. Photochem Photobiol 47: 689-697, 1988

    Google Scholar 

  32. Beaton S, McPherson RA, Tilley L: Alterations in erythrocyte band 3 organization induced by the photosensitizer, hematoporphyrin derivative. Photochem Photobiol 62: 353-355,1995

    Google Scholar 

  33. Bolodon VN, Krut'ko IV, Rozin VV, Chernitski EA: Effect of erythrocyte membrane structure on the dose dependence of photohemolysis. Biofizika 41: 413-416, 1996

    Google Scholar 

  34. Rotenberg M, Cohen S, Margalit R: Thermodynamics of porphyrin binding to serum albumin: Effects of temperature, of porphyrin species and of albumin-carried fatty acid. Photochem Photobiol 46: 689-693, 1987

    Google Scholar 

  35. Rosenberger V, Margalit R: Thermodynamics of the binding of hematoporphyrin ester, a hematoporphyrin derivative-like photosensitizer, and its components to human serum albumin, human high-density lipoprotein and human low-density lipoprotein. Photochem Photobiol 58: 627-630, 1993

    Google Scholar 

  36. Timmins GS, Davies MJ: Conformational changes induced in bovine serum albumin by the photodynamic action of haematoporphyrin. J Photochem Photobiol B: Biol 24: 117-122, 1994

    Google Scholar 

  37. Morgan WT, Smith A, Koskelo P: The interaction of human serum albumin and hemopexin with porphyrins, Biochim Biophys Acta 624: 271-285, 1980

    Google Scholar 

  38. Beltramini M, Firey PA, Ricchelli F, Rodgers AJ, Jori G: Steady-state and time-resolved spectroscopic studies on the hematoporphyrin-lipoprotein complex. Biochemistry 26: 6852-6858, 1987

    Google Scholar 

  39. Wolff DJ, Naddelman RA, Lubeskie A, Sakes DA. Inhibition of nitric oxide synthase isoforms by porphyrins. Arch Biochem Biophys 333: 27-34, 1996

    Google Scholar 

  40. Afonso SG, de Salamanca RE, Batle A: Folding and unfolding of delta-aminolevulinic acid dehydratase and porphobilinogen deaminase induced by uro and protoporphyrin. Int J Biochem Cell Biol 29: 493-503, 1997

    Google Scholar 

  41. Cardalda CA, Juknat AA, Princ FG, Batlle A: Rat harderian gland porphobilinogen deaminase: Characterization studies and regulatory action of protoporphyrin IX. Arch Biochem Biophys 347: 69-77, 1997

    Google Scholar 

  42. Penning LC, Tijssen K, van Steveninck J, Dubbelman TM: Hematoporphyrin derivative-induced photodynamic inhibition of Na+/K+-ATPase in L929 fibroblasts, Chinese hamster ovary cells and T24 human bladder transitional carcinoma cells. Photochem Photobiol 59: 336-341, 1994

    Google Scholar 

  43. Hilf R, Small DB, Murant RS, Leakey PB, Gibson SL: Hematoporphyrin derivative-induced photosensitivity of mitochondrial succinate dehydrogenase and selected cytosolic enzymes of R3230AC mammary adenocarcinomas of rats. Cancer Res 44: 1483-1488, 1984

    Google Scholar 

  44. van Steveninck J, Boegheim JP, Dubbelman TM, van der Zee J: The mechanism of potentiation of horseradish peroxidase-catalysed oxidation of NADPH by porphyrins. Biochem J 242: 611-613, 1987

    Google Scholar 

  45. van Steveninck J, Boegheim JP, Dubbelman TM, van der Zee J: The influence of porphyrins on iron-catalysed generation of hydroxyl radicals. Biochem J 250: 197-201, 1988

    Google Scholar 

  46. Sil S, Chakraborti AS: Protoporphyrin IX potentiates horseradish peroxidase-catalysed oxidation of NADH: Involvement of enzyme-porphyrin interaction. Biochem Mol Biol International: 42: 759-768, 1997

    Google Scholar 

  47. Margalit R, Shaklai N, Cohen S: Fluorimetric studies on the dimerization equilibrium of protoporphyrin IX and its haematoderivative. Biochem J 209: 547-552, 1983

    Google Scholar 

  48. Smith GJ, Ghiggino KP: The photophysics of hematoporphyrin dimers of aggregates in aqueous solution. J Photochem Photobiol B: Biol 19: 49-54, 1993

    Google Scholar 

  49. Hirsch RE, Lin MJ, Pulakhandan UP, Nagel RL, Sandberg S: Hemoglobin oxygen affinity is increased in erythropoietic protoporphyria. Photochem Photobiol 57: 885-888, 1993

    Google Scholar 

  50. van Steveninck J, Dubbelman TM, de Goeij AF, Went LN: Binding of protoporphyrin to hemoglobin in red blood cells of patients with erythropoietic protoporphyria. Hemoglobin 1: 679-690, 1977

    Google Scholar 

  51. Lamola AA, Piomelli S, Poh-Fitzpatric MG, Yamane T, Harber LC: Erythropoietic protoporphyria and lead intoxication: The molecular basis for difference in cutaneous photosensitivity. II. Different binding of erythrocyte protoporphyrin to hemoglobin. J Clin Invest 56: 1528-1533, 1975

    Google Scholar 

  52. Sudhakar K, Loe S, Yonetani T, Vanderkooi JM: Fluorescent derivatives of human hemoglobin. Differences in interaction of the porphyrin with the protein between the alpha and beta subunits. J Biol Chem 269: 23095-23101, 1994

    Google Scholar 

  53. Sil S, Kar M, Chakraborti AS: Studies on the interaction of hematoporphyrin with hemoglobin. J Photochem Photobiol B: Biol 41: 67-72, 1997

    Google Scholar 

  54. Sil S, Kar M, Chakraborti AS: Haematoporphyrin enhances the peroxidase activity of hemoglobin. J Porphyrins Phthalocyanines 4: 168-174, 2000

    Google Scholar 

  55. Sil S, Chakraborti AS: Hematoporphyrin interacts with myoglobin and alters its functions. Mol Cell Biochem 237: 103-110, 2002

    Google Scholar 

  56. Bhattacharyya J, Bhattacharyya M, Chakraborti AS, Chaudhuri U, Poddar RK: TFZ is more potent in releasing oxygen from hemoglobin and myoglobin as compared to CPZ. J Pharm Pharmacol 48:965-967, 1996

    Google Scholar 

  57. Bhattacharyya M, Chaudhuri U, Poddar RK: Evidence for cooperative binding of CPZ with hemoglobin. Biochem Biophys Res Commun 167: 1146-1153, 1990

    Google Scholar 

  58. Bhattacharyya M, Chaudhuri U, Poddar RK: Studies on the interaction of CPZ with hemoglobin. Int J Biol Macromol 12: 297-301, 1990

    Google Scholar 

  59. Hirsch RE, Lin MJ, Park CM: Interaction of zinc protoporphyrin with intact oxyhemoglobin. Biochemistry 28: 1851-1855, 1989

    Google Scholar 

  60. Patel RP, Svistunenko DA, Darley-Usmer VM, Symons MC, Wilson MT: Redox cycling of human methemoglobin by H2O2 yields persistent ferryl iron and protein based radicals. Free Radic Res 25: 117-123, 1996

    Google Scholar 

  61. Giardina B, Messana I, Scatena R, Castagnola M: The multiple functions of hemoglobin. Crit Rev Biochem Mol Biol 30: 165-196, 1995

    Google Scholar 

  62. Nagababu E, Rifkind JM: Formation of fluorescent heme degradation products during the oxidation of hemoglobin by hydrogen peroxide. Biochem Biophys Res Commun 247: 592-596, 1998

    Google Scholar 

  63. Balagopalkrishna C, Abugo OO, Horsky J, Manoharan PJ, Nagababu E, Rifkind JM: Superoxide produced in the heme pocket of the β chain of hemoglobin reacts with the β 93 cysteine to produce a thiol radical. Biochemistry 37: 13194-13199, 1998

    Google Scholar 

  64. Fridovich I: Biological effects of the superoxide radical. Arch Biochem Biophys 247: 1-11, 1986

    Google Scholar 

  65. Takayama K, Nakano M: Mechanism of thyroxin-mediated oxidation of reduced nicotinamide adenine dinucleotide in peroxidase-H2O2 system. Biochemistry 16: 1921-1926, 1977

    Google Scholar 

  66. Everse J, Johnson MC, Marini MA: Peroxidase activities of hemoglobin and hemoglobin derivatives. In: J. Everse, K.D. Vandegriff, R.M. Winslow (eds). Methods in Enzymology, vol. 231. Academic Press, New York, 1994, pp 547-561

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborti, A.S. Interaction of porphyrins with heme proteins – a brief review. Mol Cell Biochem 253, 49–54 (2003). https://doi.org/10.1023/A:1026097117057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026097117057

Navigation