Skip to main content
Log in

Unified Field Theory from Enlarged Transformation Group. The Consistent Hamiltonian

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A theory has been presented previously in which the geometrical structure of a real four-dimensional space time manifold is expressed by a real orthonormal tetrad, and the group of diffeomorphisms is replaced by a larger group. The group enlargement was accomplished by including those transformations to anholonomic coordinates under which conservation laws are covariant statements. Field equations have been obtained from a variational principle which is invariant under the larger group. These field equations imply the validity of the Einstein equations of general relativity with a stress-energy tensor that is just what one expects for the electroweak field and associated currents. In this paper, as a first step toward quantization, a consistent Hamiltonian for the theory is obtained. Some concluding remarks are given concerning the need for further development of the theory. These remarks include discussion of a possible method for extending the theory to include the strong interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bade, W. L. and Jehle, H. (1953). An introduction to spinors. Reviews of Modern Physics 25, 714.

    Google Scholar 

  • Barut, A. O. (1980). Electrodynamics and Classical Theory of Fields and Particles, 1st edn., Dover, New York, p. 11.

    Google Scholar 

  • Bergmann, P. G. and Goldberg, I. (1955). Dirac bracket transformation in phase space. Physical Review 98, 531.

    Google Scholar 

  • Dirac, P. A. M. (1930). The Principles of Quantum Mechanics, Cambridge University Press, Cambridge, Preface to First Edition.

    Google Scholar 

  • Dirac, P. A. M. (1964). Lectures on Quantum Mechanics, Academic Press, New York.

    Google Scholar 

  • Eddington, A. E. (1924). The Mathematical Theory of Relativity, 2nd edn., Cambridge University Press, Cambridge, p. 222.

    Google Scholar 

  • Einstein, A. (1928a). Riemanngeometrie mit Aufrechterhaltung des Begriffes des Fernparallelismus. Preussischen Akademie der Wissenshaften, Phys.-math. Klasse, Sitzungsberichte 1928, 217.

  • Einstein, A. (1928b). Neue Möglichkeit für eine einheitliche Feltheorie von Gravitation und Elektrizität. Preussischen Akademie der Wissenshaften, Phys.-math. Klasse, Sitzungsberichte 1928, 224.

  • Einstein, A. (1949). In Albert Einstein: Philosopher-Scientist, Vol. I, P. A. Schilpp, ed. Harper, New York, p. 89.

    Google Scholar 

  • Eisenhart, L. P. (1925). Riemannian Geometry, Princeton University Press, Princeton, NJ, p. 97.

    Google Scholar 

  • Henneaux, M. and Teitelboim, C. (1992). Quantization of Gauge Systems, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Loos, H. G. (1963). Spin connection in general relativity. Annals of Physics 25, 91.

    Google Scholar 

  • Misner, C. (1957). Feynman quantization of general relativity. Reviews of Modern Physics 29, 497-509.

    Google Scholar 

  • Moriyasu, K. (1983). An Elementary Primer for Gauge Theory, World Scientific, Singapore, p. 110.

    Google Scholar 

  • Nakahara, M. (1990). Geometry, Topology and Physics, Adam Hilger, New York, p. 344.

    Google Scholar 

  • Pandres, D., Jr. (1962). On forces and interactions between fields. Journal of Mathematical Physics 3, 602.

    Google Scholar 

  • Pandres, D., Jr. (1981). Quantum unified field theory from enlarged coordinate transformation group. Physical Review D 24, 1499.

    Google Scholar 

  • Pandres, D., Jr. (1984a). Quantum unified field theory from enlarged coordinate transformation group. II. Physical Review D 30, 317.

    Google Scholar 

  • Pandres, D., Jr. (1984b). Quantum geometry from coordinate transformations relating quantum observers. International Journal of Theoretical Physics 23, 839.

    Google Scholar 

  • Pandres, D., Jr. (1995). Unified gravitational and Yang—Mills fields. International Journal of Theoretical Physics 34, 733.

    Google Scholar 

  • Pandres, D., Jr. (1998). Gravitational and electroweak interactions. International Journal of Theoretical Physics 37, 827-839.

    Google Scholar 

  • Pandres, D., Jr. (1999). Gravitational and electroweak unification. International Journal of Theoretical Physics 38, 1783-1805.

    Google Scholar 

  • Rosenfeld, I. (1930). “Zur Quantelung der Wellen felder,” Annalen der Physik, 5, 113.

    Google Scholar 

  • Salam, A. (1968). Weak and electromagnetic interactions. In Proceedings of the 8th Nobel Symposium on Elementary Particle Theory, N. Svartholm, ed., Almquist Forlag, Stockholm, p. 367.

    Google Scholar 

  • Schouten, J. A. (1954). Ricci-Calculus, 2nd edn., North-Holland, Amsterdam, p. 99ff.

    Google Scholar 

  • Schrödinger, E. (1960). Space—Time Structure, Cambridge University Press, Cambridge, pp. 97, 99.

    Google Scholar 

  • Schwarz, J. (1988). In Superstrings: A Theory of Everything? P. C. W. Davis, and J. Brown, eds., Cambridge University Press, Cambridge, p. 70.

    Google Scholar 

  • Sundermeyer, K. (1982). Constrained Dynamics, Springer-Verlag, Berlin.

    Google Scholar 

  • Synge, J. L. (1960). Relativity: The General Theory, North-Holland, Amsterdam, pp. 14, 357.

    Google Scholar 

  • Weber, J. (1961). General Relativity and Gravitational Waves, Interscience, New York, p. 147.

    Google Scholar 

  • Weinberg, S. (1967). A model of leptons. Physical Review Letters 19, 1264.

    Google Scholar 

  • Weinberg, S. (1995). The Quantum Theory of Fields, Vol. I, Cambridge University Press, Cambridge.

    Google Scholar 

  • Weinberg, S. (1996). The Quantum Theory of Fields, Vol. II, Cambridge University Press, Cambridge.

    Google Scholar 

  • Weitzenböck, R. (1928). Differentialivarianten in der Einsteinschen Theorie de Fernparallelismus. Preussischen Akademie der Wissenshaften, Phys.-math. Klasse, Sitzungsberichte 1928, 466.

  • Witten, E. (1988). In Superstrings: A Theory of Everything? P. C. W. Davis, and J. Brown, eds., Cambridge University Press, Cambridge, p. 90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandres, D., Green, E.L. Unified Field Theory from Enlarged Transformation Group. The Consistent Hamiltonian. International Journal of Theoretical Physics 42, 1849–1873 (2003). https://doi.org/10.1023/A:1026147725039

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026147725039

Navigation