Skip to main content
Log in

The Dependence of Benzo-15-Crown-5 Ether-Containing Oligo Paraphenylene Vinylene (CE-OPV) Emission Upon Complexation with Metal Ions in Solution

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The effects of metal salts (NaCl, CaCl2·2H2O, EuCl3·6H2O and Eu(OAc)3) on the steady state and time resolved fluorescence behaviour of poly(para phenylene vinylene) oligomers containing benzo-15-crown-5 ether units (CE-OPV) have been investigated. The presence of EuCl3 causes a significant (8–9 fold) increase in the fluorescence emission intensity of the OPV segments, as compared to pure CE-OPV, in 99:1 methanol/chloroform solution and a small (∼9 nm) red shift in the emission maximum. The presence of Na+ or Ca2+ results in less marked increases in fluorescence intensity compared to Eu3+. In the presence of Eu3+ and Na+, the fluorescence intensity increases approximately linearly with metal ion concentration up to a metal ion/CE-OPV molar ratio of ∼10. The emission enhancement is not related to a simple 1:1 (CE-OPV:metal ion) complex formation process. In contrast, in acetonitrile, CE-OPV shows complex fluorescence quenching behaviour as a function of EuCl3 concentration. This solvent dependence suggests that the emission changes with metal concentration are related to the formation of charge-transferred complexes. The marked changes in fluorescence quantum yield of the PPV backbone due to complexation with metal ions makes CE-OPV a sensitive fluorescent probe for metal ions, or may be exploited for improving the quantum yield of PPV-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. O. S. Wolfbeis (1991). Fiber Optic Chemical Sensors and Biosensors, Vols. I and II, CRC Press, London.

    Google Scholar 

  2. D. T. McQuade, A. E. Pullen, and T. M. Swager (2000). Conjugated polymer-based chemical sensors. Chem. Rev. 100, 2537-2574.

    Google Scholar 

  3. J. Kim, D. T. McQuade, S. K. McHugh, and T. M. Swager (2000). A Poly(phenyleneethylene) KC chemosensor: Detection via inter-molecular aggregation. Polym. Prepr. 41, 32-33.

    Google Scholar 

  4. J. S. Yang and T. M. Swager (1998). Fluorescent porous polymer films as TNT chemosensors: Electronic and structural effects. J. Am.Chem. Soc. 120, 11864-11873.

    Google Scholar 

  5. J. S. Yang and T. M. Swager (1998). Porous shape persistent fluorescent polymer films: An approach to TNT sensory materials. J. Am.Chem. Soc. 120, 5321-5322.

    Google Scholar 

  6. T. M. Swager (1998). The molecular wire approach to sensory signal amplification. Acc. Chem. Res. 31, 201-207.

    Google Scholar 

  7. J. Kim, D. T. McQuade, S. K. McHugh, and T. M. Swager (2000). Ion specific aggregation in conjugated polymers: Highly sensitive and selective fluorescent ion chemosensors. Angew. Chem. Int. Ed. 39, 3868-3872.

    Google Scholar 

  8. C. J. Collison, L. J. Rothberg, V. Treemaneekarn, and Y. Li (2001). Conformational effects on the photophysics of conjugated polymers: A two species model for MEH-PPV spectroscopy and dynamics. Macromolecules 34, 2346-2353.

    Google Scholar 

  9. C. J. Collison, V. Treemaneekarn, J. W. J. Oldham, J. H. Hsu, and L. J. Rothberg (2001). Aggregation effects on the structure and optical properties of a model PPV oligomer. Synth. Met. 119, 515-518.

    Google Scholar 

  10. E. M. Conwell (1997). Excimers in poly(phenylene vinylene) and its derivatives. Synth. Met. 85, 995-999.

    Google Scholar 

  11. E. M. Conwell (1998). Mean free time for excimer light emission in conjugated polymers. Phys. Rev. B 57, 14200-14202.

    Google Scholar 

  12. R. Jakubiak, C. J. Collison, W. C. Wan, L. J. Rothberg, and B. R. Hseih (1999). Aggregation quenching of luminescence in electroluminescent conjugated polymers. J. Phys. Chem. A 103, 2394-2398.

    Google Scholar 

  13. T.-Q. Nguyen, I. B. Martini, J. Liu, and B. J. Schwar (2000). Controlling interchain interactions in conjugated polymers: The effects of chain morphology on exciton-exciton annihilation and aggregation in MEH-PPV films. J. Phys. Chem. B 104, 237-255.

    Google Scholar 

  14. T. Q. Nguyen, V. Doan, and B. J. Schwartz (1999). Conjugated polymer aggregates in solution: Control of interchain interactions. J. Chem. Phys. 110, 4068-4078.

    Google Scholar 

  15. M. W. Wu and E. M. Conwell (1997). Effect of interchain coupling on conducting polymer luminescence: Excimers in derivatives of poly(phenylene vinylene). Phys. Rev. B 56, R10060-R10062.

    Google Scholar 

  16. M. Yan, L. J. Rothberg, E. W. Kwock, and T. M. Miller (1995). Interchain excitations in conjugated polymers. Phys. Rev. Lett. 75, 1992-1995.

    Google Scholar 

  17. E. Koller and O. S. Wolfbeis (1991). in O. S. Wolfbeis (Ed.), Fiber Optic Chemical Sensors and Biosensors, CRC Press, London, pp. 303.

    Google Scholar 

  18. W. R. Seitz (1991). in O. S. Wolfbeis (Ed.), Fiber Optic Chemical Sensors and Biosensors, CRC Press, London, pp. 7-9.

    Google Scholar 

  19. B. Winkler, A. W.-H. Mau, and L. Dai (2000). Crown ether substituted phenylenevinylene oligomers: Synthesis and electroluminescent properties. Phys. Chem. Chem. Phys. 2, 291-295.

    Google Scholar 

  20. J. Morgado, F. Cacialli, R. H. Friend, B. S. Chuah, S. C. Moratti, and A. B. Holmes (2000). Luminescence properties of PPV-based copolymers with crown ether substituents. Synth. Met. 111-112, 449-452.

    Google Scholar 

  21. R. M. Izatt, J. S. Bradshaw, S. A. Nielsen, J. D. Lamb, J. J. Christiansen, and D. Sen (1985). Thermodynamic and kinetic data for cation-macrocycle interaction. Chem. Rev. 85, 271-339.

    Google Scholar 

  22. M. Kollmannsberger, K. Rurack, U. Resch-Genger, and J. Daub (1998). Ultrafast charge transfer in amino-substituted boron dipyrromethane dyes and its inhibition by cation complexation: A new design concept for highly sensitive fluorescent probes. J. Phys. Chem. A 102, 10211-10220.

    Google Scholar 

  23. L. Prodi, C. Bargossi, M. Montalti, N. Zaccheroni, N. Su, J. Bradshaw, R. M. Izatt, and P. B. Savage (2000). An effective fluorescent chemosensor for mercury ions. J. Am. Chem. Soc. 122, 6769-6770 (and references therein).

    Google Scholar 

  24. D. D. C. Bradley (1991). Molecular electronics-Aspects of the physics. Chem. Br. 27, 719-723.

    Google Scholar 

  25. A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, C. N. Greenham, P. L. Burn, A. B. Holmes, and A. Kraft (1992). Poly(phenylenevinylene) light-emitting diodes: Enhanced electro-luminescent efficiency through change carrier confinement. Appl. Phys. Lett. 61, 2793-2795.

    Google Scholar 

  26. P. L. Burn, A. B. Holmes, A. Kraft, D. D. C. Bradley, A. R. Brown, and R. H. Friend (1992). Synthesis of a segmented conjugated polymer chain giving a blue-shifted electroluminescence and improved efficiency. J. Chem. Soc., Chem. Comm. 32-34.

  27. D. J. Haines, Varian Inc. (2001). Personal Communication-Calibrated lamp correction of Varian Eclipse Spectrofluorimeter.

  28. J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic, New York.

    Google Scholar 

  29. C. K. Chee, K. P. Ghiggino, T. A. Smith, S. Rimmer, I. Soutar, and L. Swanson (2001). Time-resolved fluorescence studies of the interactions between the thermoresponsive polymer host, poly(N-isopropylacrylamide), and a hydrophobic guest, pyrene. Polymer 42, 2235-2240.

    Google Scholar 

  30. C. A. Parker and T. A. Joyce (1967). Delayed fluorescence of anthracene and some substituted anthracenes. Chem. Comm. 744-745.

  31. J. Jiang, N. Higashiyama, K. Machida, and G. Adachi (1998). The luminescent properties of divalent europium complexes of crown ethers and cryptands. Coord. Chem. Rev. 170, 1-30.

    Google Scholar 

  32. M. Sowinska, M.-T. Le Bris, and B. Valeur (1991). Frequency conversion of light via energy transfer in complexes of crown-ether-linked quinoxalinones with Eu 3 C. Photochem. Photobiol. A: Chem. 60, 383-386.

    Google Scholar 

  33. M. Stork, B. S. Gaylord, A. J. Heeger, and G. C. Bazan (2002). Energy transfer in mixtures of water-soluble oligomers: Effect of charge, aggregation, and surfactant complexation. Adv. Mater. 14, 361-366.

    Google Scholar 

  34. J. Wang, D. Wang, E. K. Miller, D. Moses, G. C. Bazan, and A. J. Heeger (2000). Photoluminescence of water-soluble conjugated polymers: Origin of enhanced quenching by charge transfer. Macromolecules 33, 5153-5158.

    Google Scholar 

  35. L. X. Chen, W. J. H. Jager, D. J. Gosztola, M. P. Niemczyk, and M. R. Wasielewski (2001). Effects of chemical modifications on photophysics and exciton dynamics of π -conjugation attenuated and metal-chelated photoconducting polymers. Synth. Met. 116, 229-234.

    Google Scholar 

  36. T. Huser, M. Yan, and L. J. Rothberg (2000). Single chain spectroscopy of conformational dependence of conjugated polymer photophysics. Proc. Nat. Acad. Sci. 97, 11187-11191.

    Google Scholar 

  37. R. A. J. Janssen, N. S. Sariciftci, K. Pakbaz, J. J. McNamara, S. Schricker, A. J. Heeger, and F. Wudl (1995). Photoinduced absorption of π -conjugated polymers in solution. Synth. Met. 69, 441-442.

    Google Scholar 

  38. L. P. Candeias, J. Wildeman, G. Hadziioannou, and J. M. Warman (2000). Pulse radiolysis-optical absorption studies on the triplet states of p-phenylenevinylene oligomers in solution. J. Phys. Chem. B 104, 8366-8371.

    Google Scholar 

  39. A. P. Monkman, H. D. Burrows, M. da G. Miguel, I. Hamblett, and S. Navaratnam (2001). Triplet state spectroscopy of conjugated polymers studied by pulse radiolysis. Synth. Met. 116, 75-79.

    Google Scholar 

  40. A. P. Monkman, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett, and S. Navaratnam (2001). Triplet energies of π -conjugated polymers. Phys. Rev. Lett. 86, 1358-1361.

    Google Scholar 

  41. K. Bastyns and Y. Engelborghs (1992). Acrylamide quenching of the fluorescence of glyceraldehyde-3-phosphate dehydrogenase: Reversible and irreversible effects. Photochem. Photobiol. 55, 9-16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor A. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramachandran, G., Simon, G., Cheng, Y. et al. The Dependence of Benzo-15-Crown-5 Ether-Containing Oligo Paraphenylene Vinylene (CE-OPV) Emission Upon Complexation with Metal Ions in Solution. Journal of Fluorescence 13, 427–436 (2003). https://doi.org/10.1023/A:1026169023668

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026169023668

Navigation