Skip to main content
Log in

Classical and Quantum Coherent States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

p-Mechanics is a consistent physical theory which describes both quantum and classical mechanics simultaneously (V. V. Kisil, p-Mechanics as a physical theory. An Introduction, E-print:arXiv:quant-ph/0212101, 2002; International Journal of Theoretical Physics 41(1), 63–77, 2002). We continue the development of p-mechanics by introducing the concept of states. The set of coherent states we introduce allows us to evaluate classical observables at any point of phase space and simultaneously to evaluate quantum probability amplitudes. The example of the forced harmonic oscillator is used to demonstrate these concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Arveson, W. (1976). An invitation to C*-algebras. In Graduate Texts in Mathematics, Vol. 39, Springer-Verlag, New York.

    Google Scholar 

  • Dixmier, J. (1977). C * -Algebras, Vol. 15, North-Holland Publishing, Amsterdam. Translated from the French by Francis Jellett, North-Holland Mathematical Library.

    Google Scholar 

  • Folland G. B. (1989). Harmonic Analysis in Phase Space, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Goldstein, H. (1980). Classical Mechanics, 2nd edn. Addison-Wesley, Reading, MA, Addison-Wesley Series in Physics.

    Google Scholar 

  • Hepp, K. (1974). The classical limit for quantum mechanical correlation functions. Communication in Mathematics Physics 35, 265-277.

    Google Scholar 

  • Honerkamp, J. (1998). Statistical Physics, Springer-Verlag, Berlin. An advanced Approach With Applications, Translated from the German manuscript by Thomas Filk.

    Google Scholar 

  • José, J. V. and Saletan, E. J. (1998). Classical Dynamics, Cambridge University Press, Cambridge. A contemporary approach.

    Google Scholar 

  • Kirillov, A. A. (1976). Elements of the Theory of Representations, Springer-Verlag, Berlin. Translated from the Russian by Edwin Hewitt, Grundlehren der Mathematischen Wissenschaften, Band 220.

    Google Scholar 

  • Kirillov, A. A. (1999). Merits and demerits of the orbit method. Bulletin of American Mathematical Society N.S. 36(4), 433-488.

    Google Scholar 

  • Kirillov, A. A. and Gvishiani, A. D. (1982). Theorems and Problems in Functional Analysis (Problem Books in Mathematics), Springer-Verlag, New York. Translated from the Russian by Harold H. McFaden.

    Google Scholar 

  • Kisil, V. V. (2002a). p-Mechanics as a Physical Theory. An Introduction, E-print: arXiv:quant-ph/0212101.

  • Kisil, V. V. (2002b). Quantum and classical brackets. International Journal of Theoretical Physics 41(1), 63-77. E-print: arXiv:math-ph/0007030.

    Google Scholar 

  • Kurşunogğlu, B. (1962). Modern Quantum Theory, W. H. Freeman, San Francisco.

    Google Scholar 

  • Martinez, J. (1984). Diagrammatic solution of the forced oscillator. European Journal of Physics 4(4), 221-227.

    Google Scholar 

  • Merzbacher, E. (1970). Quantum Mechanics, Wiley, New York.

    Google Scholar 

  • Perelomov, A. (1986). Generalized Coherent States and Their Applications, Texts and Monographs in Physics. Springer-Verlag, Berlin.

    Google Scholar 

  • Taylor, M. E. (1986). Noncommutative Harmonic Analysis, American Mathematical Society, Providence, RI.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodlie, A. Classical and Quantum Coherent States. International Journal of Theoretical Physics 42, 1707–1731 (2003). https://doi.org/10.1023/A:1026175103658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026175103658

Navigation