Skip to main content
Log in

31P NMR for the study of P metabolism and translocation in arbuscular mycorrhizal fungi

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

31P nuclear magnetic resonance (NMR) spectroscopy was used to study phosphate (P) metabolism in mycorrhizal and nonmycorrhizal roots of cucumber (Cucumis sativus L) and in external mycelium of the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith. The in vivo NMR method allows biological systems to be studied non-invasively and non-destructively. 31P NMR experiments provide information about cytoplasmic and vacuolar pH, based on the pH-dependent chemical shifts of the signals arising from the inorganic P (Pi) located in the two compartments. Similarly, the resonances arising from α, β and γ phosphates of nucleoside triphosphates (NTP) and nucleoside diphosphates (NDP) supply knowledge about the metabolic activity and the energetic status of the tissue. In addition, the kinetic behaviour of P uptake and storage can be determined with this method. The 31P NMR spectra of excised AM fungi and mycorrhizal roots contained signals from polyphosphate (PolyP), which were absent in the spectra of nonmycorrhizal roots. This demonstrated that the Pi taken up by the fungus was transformed into PolyP with a short chain length. The spectra of excised AM fungi revealed only a small signal from the cytoplasmic Pi, suggesting a low cytoplasmic volume in this AM fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ashford A E, Ryde S and Barrow K D 1994 Demonstration of a short chain polyphosphate in Pisolithus tinctorius and the implications for phosphorus transport. New Phytol. 126, 239–247.

    Article  CAS  Google Scholar 

  • Callow J A, Capaccio L C M, Parish G and Tinker P B 1978 Detection and estimation of polyphosphate in vesicular-arbuscular mycorrhizas. New Phytol. 80, 125–134.

    Article  CAS  Google Scholar 

  • Cooper K M and Tinker P B 1978 Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. New Phytol. 81, 43–52.

    Article  CAS  Google Scholar 

  • Ezawa T, Saito M and Yoshida T 1995 Comparison of phosphatase localization in the intraradical hyphae of arbuscular mycorrhizal fungi, Glomus spp. and Gigaspora spp. Plant Soil 176, 57–63.

    Article  CAS  Google Scholar 

  • Fox G G, Ratcliffe R G and Southon T E 1989 Airlift systems for in vivo NMR spectroscopy of plant tissues. J. Magn. Reson. 82, 360–366.

    CAS  Google Scholar 

  • Fox G G and Ratcliffe R G 1990 31P NMR observations on the effect of the external pH on the intracellular pH values in plant cell suspension cultures. Plant Physiol. 93, 512–521.

    PubMed  CAS  Google Scholar 

  • Fox G G, McCallan N R and Ratcliffe R G 1995 Manipulating cytoplasmic pH under anoxia: A critical test of the role of pH in the switch from aerobic to anaerobic metabolism. Planta 195, 324–330.

    Article  CAS  Google Scholar 

  • Gerlitz T G M and Werk W B 1994 Investigations on phosphate uptake and polyphosphate metabolism by mycorrhized and nonmycorrhized roots of beech and pine as investigated by in vivo 31P-NMR. Mycorrhiza 4, 207–214.

    Article  CAS  Google Scholar 

  • Gerlitz T G M and Gerlitz A 1997 Phosphate uptake and polyphosphate metabolism of mycorrhizal and nonmycorrhizal roots of pine and of Suillus bovinus at varying external pH measured by in vivo 31P-NMR. Mycorrhiza 7, 101–106.

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V and Gianinazzi S 1978 Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. II. Soluble alkaline phosphatase specific to mycorrhizal infection on onion roots. Physiol. Plant Pathol. 12, 45–53.

    Article  CAS  Google Scholar 

  • Grellier B, Strullu D G, Martin F and Renaudin S 1989 Synthesisin vitro, microanalysis and 31P-NMR study of metachromatic granules in birch mycorrhizas. New Phytol. 112, 49–54.

    Article  CAS  Google Scholar 

  • Harrison M J and van Buuren M L 1995 A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378, 626–629.

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen I, Abbott L K and Robson, A D 1992a External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol. 120, 371–380.

    Article  CAS  Google Scholar 

  • Jakobsen I, Abbott L K and Robson, A D 1992b External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 2. Hyphal transport of 32P over defined distances. New Phytol. 120, 509–516.

    Article  CAS  Google Scholar 

  • Johansen A, Finlay R D and Olsson P A 1996 Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 133, 705–712.

    Article  CAS  Google Scholar 

  • Kojima T, Hayatsu M and Saito M 1998 Intraradical hyphae phosphatase of the arbuscular mycorrhizal fungus Gigaspora margarita. Biol. Fertil. Soils 26, 331–335.

    Article  CAS  Google Scholar 

  • Küsel A C, Sianoudis J, Leibfritz D, Grimme L H and Mayer A 1990 The dependence of the cytoplasmic pH in aerobic and anaerobic cells of the green algae Chlorella fusca and Chlorella vulgaris on the pH of the medium as determined by 31P in vivo NMR spectroscopy. Arch. Microbiol. 153, 254–258.

    Article  Google Scholar 

  • Lee R B, Ratcliffe R G and Southon T E 1990 31P NMR measurements of the cytoplasmic and vacuolar Pi content of mature maize roots: Relationships with phosphorus status and phosphate fluxes. J. Exp. Bot. 41, 1063–1078.

    CAS  Google Scholar 

  • Loughman B C and Ratcliffe R G 1984 Nuclear magnetic resonance and the study of plants. In Advances in Plant Nutrition, Volume 1. Eds. PB Tinker and A Läuchli. pp 241–283. Praeger Publishers, New York.

    Google Scholar 

  • MacFall J S, Slack S A and Wehrli S 1992 Phosphorus distribution in red pine roots and the ectomycorrhizal fungus Hebeloma arenosa. Plant Physiol. 100, 713–717

    PubMed  CAS  Google Scholar 

  • Martin F 1985 Monitoring plant metabolism by 13C, 15N and 14N nuclear magnetic resonance spectroscopy. A review of the applications to algae, fungi and higher plants. Physiol. Vég. 23, 463–490.

    CAS  Google Scholar 

  • Martin F, Canet D, Rolin D, Marchal J P and Larher F 1983 Phosphorus-31 nuclear magnetic resonance study of polyphosphate metabolism in intact ectomycorrhizal fungi. Plant Soil 71, 469–476.

    Article  CAS  Google Scholar 

  • Martin F, Marchal J P, Timinska A and Canet D 1985 The metabolism and physical state of polyphosphate in ectomycorrhizal fungi. A 31P nuclear magnetic resonance study. New Phytol. 101, 275–290.

    Article  CAS  Google Scholar 

  • Martin F, Rubini P, Cô té R and Kottke I 1994 Aluminium polyphosphate complexes in the mycorrhizal basidiomycete Laccaria bicolor: A 27Al-nuclear magnetic resonance study. Planta 194, 241–246.

    Article  CAS  Google Scholar 

  • Martins A, Santos M, Santos H and Pais M S 1999 A 31P nuclear magnetic resonance study of phosphate levels in roots of ectomycorrhizal and nonmycorrhizal plants of Castanea sativa Mill. Trees 13, 168–172.

    Google Scholar 

  • Orlovich D A and Ashford A E 1993 Polyphosphate granules are an artefact of specimen preparation in the ectomycorrhizal fungus Pisolithus tinctorius. Protoplasma 173, 91–102.

    Article  CAS  Google Scholar 

  • Roberts J K M 1987 NMR in plant biochemistry. In The Biochemistry of Plants, Volume 13. Eds DD Davies. pp 181–227. Academic Press, New York.

    Google Scholar 

  • Roberts J K M, Ray P M, Wade-Jardetzky N and Jardetzky O 1980 Estimation of cytoplasmic and vacuolar pH in higher plant cells by 31P NMR. Nature 283, 870–872.

    Article  CAS  Google Scholar 

  • Rolin D B, Boswell R T, Sloger C, Tu S and Pfeffer P E 1989 In vivo 31P NMR spectroscopic studies of soybean Bradyrhizobium symbiosis. Plant Physiol. 89, 1238–1246.

    Article  PubMed  CAS  Google Scholar 

  • Saito M 1995 Enzyme activities of internal hyphae and germinated spores of an arbuscular mycorrhizal fungus, Gigaspora margarita (Becker and Hall). New Phytol. 129, 425–431.

    Article  CAS  Google Scholar 

  • Schweiger P F, Thingstrup I and Jakobsen I 1999 Comparison of two test systems for measuring plant phosphorus uptake via arbuscular mycorrhizal fungi. Mycorrhiza 8, 207–213.

    Article  CAS  Google Scholar 

  • Shachar-Hill Y, Pfeffer P E, Douds D, Osman S F, Doner, L W and Ratcliffe R G 1995 Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek. Plant Physiol. 108, 7–15.

    PubMed  CAS  Google Scholar 

  • Smith S E and Read D J 1997 Mycorrhizal Symbiosis. Academic Press, London.

    Google Scholar 

  • Spickett CM, Smirnoff N and Ratcliffe R G 1993 An in vivo nuclear magnetic resonance investigation of ion transport in maize (Zea mays) and Spartina anglica roots during exposure to high salt concentrations. Plant Physiol. 102, 629–638.

    PubMed  CAS  Google Scholar 

  • Sylvia DM1988 Activity of external hyphae of vesicular-arbuscular mycorrhizal fungi. Soil Biol. Biochem. 20, 39–43.

    Article  Google Scholar 

  • Tisserant B, Gianinazzi-Pearson V, Gianinazzi S and Gollotte A 1993 In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol. Res. 97, 245–250.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasmussen, N., Lloyd, D.C., Ratcliffe, R.G. et al. 31P NMR for the study of P metabolism and translocation in arbuscular mycorrhizal fungi. Plant and Soil 226, 245–253 (2000). https://doi.org/10.1023/A:1026411801081

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026411801081

Navigation