Skip to main content
Log in

Mobile Bipolaron—Strong Coupling Approach

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

We explore the properties of the bipolaron in a 1D Holstein–Hubbard model with dynamical quantum phonons. We apply strong coupling theory to investigate the intersite bipolaron. We investigate the influence of the Hubbard interaction on the bipolaron binding energy, effective mass, and phase diagram. We compare our analytic results to recent numerical calculations [1]. In the intermediate and strong coupling regimes, a bipolaron is stable beyond the naive stability limit U 0 = 2ωg 2. The intersite bipolaron has a significantly reduced mass compared to the single site bipolaron, and is stable in the strong coupling regime up toU c ∼ 4ωg 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Bonča, T. Katrašnik, and S. A. Trugman, Phys. Rev. Lett. 84, 3153 (2000).

    Google Scholar 

  2. Lattice Effects in High-T c Superconductors, Y. Bar-Yam, T. Egami, J. Mustre de Leon, and A. R. Bishop, eds. World Scientific, Singapore (1992).

    Google Scholar 

  3. E. K. H. Salje, A. S. Aleksandrov, and W. Y. Liang, Polarons and Bipolarons in High Temperature Superconductors and Related Materials. Cambridge University Press, Cambridge (1995); A. S. Alexandrov and N. F. Mott, Rep. Progr. Phys. 57, 1197 (1994).

    Google Scholar 

  4. M. Grilli and C. Castellani, Phys. Rev. B 50, 16880 (1994).

    Google Scholar 

  5. G. Wellein, H. Röder, and H. Fehske, Phys. Rev. B 53, 9666 (1996).

    Google Scholar 

  6. F. Marsiglio, Physica C 244, 21 (1995).

    Google Scholar 

  7. A. S. Alexandrov and V. V. Kabanov, Sov. Phys. Solid State 28, 631 (1986).

    Google Scholar 

  8. E. V. L. de Mello and J. Ranninger, Phys. Rev. B 58, 9098 (1998).

    Google Scholar 

  9. B. K. Chakraverty, J. Ranninger, and D. Feinberg, Phys. Rev. Lett. 81, 433 (1998).

    Google Scholar 

  10. A. S. Alexandrov and N. F. Mott, High Temperature Superconductors and Other Superfluids. Taylor and Francis, London (1994); A. S. Alexandrov, V. V. Kabanov, and N. F. Mott, Phys. Rev. Lett. 53, 2863 (1996).

    Google Scholar 

  11. L. Proville and S. Aubry, Physica D 133, 307 (1998); L. Proville and S. Aubry, preprint; S. Aubry, in Proceedings of “Phase Separation in Cuprate Superconductors,” K. A. Muller and G. Benedek, eds. Erice, Sicily, World Scientific (1992), p. 304. The last reference discusses the possible role of S1 bipolarons in cuprate superconductors.

    Google Scholar 

  12. A. La Magna and R. Pucci, Phys. Rev. B 55, 14886 (1997).

    Google Scholar 

  13. G. D. Mahan, Many-Particle Physics, Plenum, New York (1981).

    Google Scholar 

  14. J. Bonča and S. A. Trugman, Phys. Rev. Lett. 75, 2566 (1995).

    Google Scholar 

  15. J. Bonča, S. A. Trugman, and I. Batistič, Phys. Rev. B 60, 1633 (1999).

    Google Scholar 

  16. I. G. Lang and Yu. A. Firsov, Sov. Phys. JETP 16, 1301 (1963); Sov. Phys. Solid State 5, 2049 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonča, J., Trugman, S.A. Mobile Bipolaron—Strong Coupling Approach. Journal of Superconductivity 13, 999–1003 (2000). https://doi.org/10.1023/A:1026466711595

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026466711595

Navigation