Skip to main content
Log in

Diseases of Mites

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

An overview is given of studies on diseases of mites. Knowledge of diseases of mites is still fragmentary but in recent years more attention has been paid to acaropathogens, often because of the economic importance of many mite species. Most research on mite pathogens concerns studies on fungal pathogens of eriophyoids and spider mites especially. These fungi often play an important role in the regulation of natural mite populations and are sometimes able to decimate populations of phytophagous mites. Studies are being conducted to develop some of these fungi as commercial acaricides.

Virus diseases are known in only a few mites, namely, the citrus red mite and the European red mite. In both cases, non-occluded viruses play an important role in the regulation of mite populations in citrus and peach orchards, respectively, but application of these viruses as biological control agents does not seem feasible. A putative iridovirus has been observed in association with Varroa mites in moribund honeybee colonies. The virus is probably also pathogenic for honeybees and may be transmitted to them through this parasitic mite.

Few bacteria have been reported as pathogens of the Acari but in recent years research has been concentrated on intracellular organisms such as Wolbachia that may cause distorted sex ratios in offspring and incompatibility between populations. The role of these organisms in natural populations of spider mites is in particular discussed. The effect of Bacillus thuringiensis on mites is also treated in this review, although its mode of action in arthropods is mainly due to the presence of toxins and it is, therefore, not considered to be a pathogen in the true sense of the word.

Microsporidia have been observed in several mite species especially in oribatid mites, although other groups of mites may also be affected. In recent years, Microsporidia infections in Phytoseiidae have received considerable attention, as they are often found in mass rearings of beneficial arthropods. They affect the efficacy of these predators as biological control agent of insect and mite pests. Microsporidia do not seem to have potential for biological control of mites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agudela-Silva, P. 1986. A species of Triplosporium (Zygomycetes: Entomophthorales) infecting Mononychellus progressivus (Acari: Tetranychidae) in Venezuela. Fla. Entomol. 69: 444–446.

    Google Scholar 

  • Alves, S.B., Tamai, M.A. and Lopes, R.B. 1998. Avaliação de Beauveria bassiana (Bals.) Vuill. para controle de Tetranychus urticae Koch em crisântemo. Abstracts 17th Brazil. Congr. Entomol., Rio de Janeiro, p. 1068.

  • Amrine J.W. and Stasny, T.A. 1994. Catalog of the Eriophyoidea (Acarina: Prostigmata) of the World. 798 pp. Indira Publishing House, West Bloomfield, Michigan, USA.

    Google Scholar 

  • Andersson, S.G.E., Stothard, D.R., Fuerst, P. and Kurland, C.G. 1999. Molecular phylogeny and rearrangement of rRNA genes in Rickettsia species. Mol. Biol. Evol. 16: 987–995.

    Google Scholar 

  • Andersson, S.G.E., Zomorodipour, A., Andersson, J.O., Sicheritz-Pontén, T., Alsmark, U.C.M., Podowski, R.M., Näslund, A.K., Eriksson, A., Winkler, H.H. and Kurland, C.G. 1998. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133–143.

    Google Scholar 

  • Baker, J.R. and Neunzig, H.N. 1968. Hirsutella thompsonii as a fungus parasite of the blueberry mite. J. Econ. Entom. 61: 1117–1118.

    Google Scholar 

  • Bałazy, S. 1973. A review of entomopathogenic species of the genus Cephalosporium Corda (Mycota, Hyphomycetales). Bull. Soc. Amis Sci. Lettres de Pozna´n, Serie D 14: 101–137.

    Google Scholar 

  • Bałazy, S. 1993. Entomophthorales. In: Flora of Poland. Fungi (Mycota). Vol. 24, 356 pp. Polish Academy of Sciences, W. Szafer Institute of Botany.

  • Bałazy, S. and Wisniewski, J. 1982. Two species of entomopathogenic fungi on the myrmecophylic mite Trachyuropoda coccinea (Michael, 1981) (Acari: Uropodina). Bull. Acad. Polon. Sci. Sèrie Sci. Biol. 30: 1–12.

    Google Scholar 

  • Bałazy, S. and Wisniewski, J. 1984. Records on some lower fungi occurring in mites (Acarina) from Poland. Acta Mycol. 20: 159–172.

    Google Scholar 

  • Bałazy, S. and Wisniewski, J. 1989. Pathogene Pilze bei Milben. Mikrokosmos 78: 299–304.

    Google Scholar 

  • Bandi, C., Anderson, T.J.C., Genchi, C. and Blaxter, M.L. 1998a. Phylogeny of Wolbachia in filarial nematodes. Proc. Roy. Soc. London B 265: 2407–2413.

    Google Scholar 

  • Bartkowski, J., Odindo, M.O. and Otieno, W.A. 1988. Some fungal pathogens of the cassava green spider mite Mononychellus spp. (Tetranychidae) in Kenya. Insect Sci. Appl. 9: 457–459.

    Google Scholar 

  • Beaver, J.B. and Reed, D.K. 1972. Susceptibility of seven tetranychids to the non-occluded virus of the citrus red mite and the correlation of the carmine spider mite as a vector. J. Invertebr. Pathol. 20: 279–283.

    Google Scholar 

  • Beerling, E.A.M. and Van der Geest, L.P.S. 1991a. Microsporidiosis in mass-rearings of the predatory mites Amblyseius cucumeris and A. barkeri (Acarina: Phytoseiidae). Proc. Exp. Appl. Entomol., NEV, Amsterdam 2: 157–162.

    Google Scholar 

  • Beerling, E.A.M. and Van der Geest, L.P.S. 1991b. A microsporidium (Microspora: Pleistophoridae) in mass-rearings of the predatory mites Amblyseius cucumeris and A. barkeri (Acarina: Phytoseiidae): Analysis of a problem. IOBC/WPRS Bull. 14: 5–8.

    Google Scholar 

  • Beerling, E.A.M., Rouppe van der Voort, J.N.A.M. and Kwakman, P. 1993. Microsporidiosis in mass rearings of predatory mites: development of a detection method. Proc. Exper. Appl. Entomol., NEV, Amsterdam 4: 199–204.

    Google Scholar 

  • Ben-Ze'ev, I., Kenneth, R.G. and Uziel, A. 1987. A reclassification of Entomophthora turbinata in Thaxterosporium gen. nov. Neozygitaceae fam. nov. (Zygomycetes: Entomophthorales. Mycotaxon 28: 313–326.

    Google Scholar 

  • Bird, F.T. 1967. A virus disease of the European red mite, Panonychus ulmi (Koch). Can. J. Microbiol. 13:1131.

    Google Scholar 

  • Bjørson, S.E. 1998. Morphology and pathology of the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). PhD Thesis, University of Alberta, Edmonton, AB, 232 pp.

  • Bjørnson, S. and Keddie, B.A. 1999. Effects of Microsporidium phytoseiuli (Microspora) on the performance of the predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae). Biol. Contr. 15: 153–161.

    Google Scholar 

  • Bjørnson, S., Steiner, M.Y and Keddie, B.A. 1996. Ultrastructure and pathology of Microsporidium phytoseiuli n.sp. infecting the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). J. Invertebr. Pathol. 68: 223–230.

    Google Scholar 

  • Bjørnson, S., Steiner, M.Y. and Keddie, B.A. 1997. Birefringent crystals and abdominal discoloration of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). J. Invertebr. Pathol. 69: 85–91.

    Google Scholar 

  • Bolland, H.R., Gutierrez, J. and Flechtmann, C.H.W. 1998. World Catalogue of the Spider Mite Family (Acari: Tetranychidae). 392 pp. Brill, Leiden.

  • Boucias, D.G. and Pendland, J.D. 1998. Principles of Insect Pathology. 537 pp. Kluwer Academic Publishers, Boston, Dordrecht, London.

    Google Scholar 

  • Boucias, D.G., McCoy, C.W. and Joslyn D.J. 1982. Isozyme differentiation among 17 geographical isolates of Hirsutella thompsonii. J. Invertebr. Pathol. 39: 329–337.

    Google Scholar 

  • Boucias, D.G., Farmerie,W.G. and Pendland, J.C. 1998. Cloning and sequencing of cDNA of the insecticidal toxin hirsutellin A. J. Invertebr. Pathol. 72: 258–261.

    Google Scholar 

  • Bourtzis, K., Dobson, S.L., Braig, H.R. and O'Neill, S.L. 1998. Rescuing Wolbachia have been overlooked... Nature 391: 852–853.

    Google Scholar 

  • Brandenburg, R.L. and Kennedy, G.G. 1982. Relationship of Neozygites floridana (Entomophthorales: Entomophthoraceae) to twospotted spider mite (Acari: Tetranychidae) populations in field corn. J. Econ. Entomol. 75: 691–694.

    Google Scholar 

  • Brandenburg, R.L. and Kennedy, G.G. 1983. Interactive effects of selected pesticides on the two-spotted spider mite and its fungal pathogen Neozygites floridana. Entomol. Exp. Appl. 34: 240–244.

    Google Scholar 

  • Breeuwer, J.A.J. 1997. Wolbachia and cytoplasmic incompatibility in the spider mites Tetranychus urticae and T. turkestani. Heredity 79: 41–47.

    Google Scholar 

  • Breeuwer, J.A.J. and Werren, J.H. 1993. Cytoplasmic incompatibility and bacterial density in Nasonia vitripennis. Genetics 135: 565–574.

    Google Scholar 

  • Breeuwer, J.A.J. and Jacobs, G. 1996. Wolbachia: Intracellular manipulators of mite reproduction. Exp. Appl. Acarol. 20: 421–434.

    Google Scholar 

  • Butt, T.M. and Heath, I.B. 1988. The changing distribution of actin and nuclear behaviour during the cell cycle of the mite pathogenic fungus Neozygites sp. (Zygomycetes: Entomophthorales). Europ. J. Cell Biol. 46: 499–505.

    Google Scholar 

  • Butt, T.M. and Humber, R.T. 1989. An immunofluorescence study of mitosis in a mitepathogen, Neozygites sp. (Zygomycetes: Entomophthorales). Protoplasma 151: 115–123.

    Google Scholar 

  • Cabrera, R.I. 1984. --El ácaro Vasates destructor, nuevo hospedero del hongo Hirsutella thompsonii. Ciencia Tec. Agric., Protección Plantas 7: 35–38.

    Google Scholar 

  • Cabrera, R.I. and Domínguez, D. 1987a. --Hirsutella nodulosa y Hirsutella kirchner: Dos nuevos hongos patógenos del ácaro del moho, Phyllopcoptruta oleivora. Cienc. Tec. Agric., Protección Plantas 10: 139–142.

    Google Scholar 

  • Cabrera, R.I. and Domínguez, D. 1987b. --El hongo Hirsutella nodulosa, nuevo parásito para el ácaro del cocotero Eriophyes guerreronis. Ciencia Tec. Agric., Cítricos y Otros Frutales 10: 41–51.

    Google Scholar 

  • Cabrera, R.I., Cáceres, I. and Domínguez, D. 1987. --Estudio de dos especies del hongo de Hirsutella y sus hospedantes en el cultivo de la guayaba Psidium guajava. Agrotecnia Cuba 19: 29–34.

    Google Scholar 

  • Camazine, S. and Liu, T.P. 1998. A putative iridivirus from the honey bee mite, Varroa jacobsoni Oudemans. J. Invertebr. Pathol. 71: 177–178.

    Google Scholar 

  • Canning, E.U. 1998. Evolutionary Relationships of Microsporidia. In: Evolutionary relationships among protozoa, G.H. Coombs, K. Vickerman, M.A. Sleigh and A. Warren (eds), pp. 77–90. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Carner, G.R. 1976. A description of the life cycle of Entomophthora sp. in the two-spotted spider mite. J. Invertebr. Pathol. 28: 245–254.

    Google Scholar 

  • Carner, G.R. and Canerday, T.D. 1968. Field and laboratory investigations with Entomophthora fresenii, a pathogen of Tetranychus spp. J. Econ. Entomol. 61: 956–959.

    Google Scholar 

  • Carner, G.R. and Canerday, T.D. 1970. Entomophthora sp. as a factor in the regulation of the two-spotted spider mite on cotton. J. Econ. Entomol. 63: 638–640.

    Google Scholar 

  • Cehrnin, L., Gafni, A., Mozes-Koch, R., Gerson, U. and Sztejnberg, A. 1997. Chitolytic activity of the acaropathogenic fungi Hirsutella thompsonii and Hirsutella necatrix. Can. J. Microbiol. 43: 440–446.

    Google Scholar 

  • Chapman, M.H. and Hoy, M.A. 1991. Relative toxicity of Bacillus thuringiensis var. tenebrionis to the two-spotted spider mite (Tetranychus urticae Koch) and its predator Metaseiulus occidentalis (Nesbitt) (Acari, Tetranychidae and Phytoseiidae). J. Appl. Entomol. 11: 147–154.

    Google Scholar 

  • De Moraes, G.J. and Delalibera, I. 1992. Specificity of a strain of Neozygites sp. (Zygomycetes: Entomophthorales) to Mononychellus tanajoa (Acari: Tetranychidae). Exp. Appl. Acarol. 14: 98–94.

    Google Scholar 

  • Delalibera, I, Sosa Gomez, D.R., De Moraes, G.J., De Alencar, J.A. and Farias Araujo, W. 1992. Infection of Mononychellus tanajoa (Acari: Tetranychidae) by the fungus Neozygites sp. (Entomophthorales) in northeastern Brazil. Fla. Entomol. 75: 145–147.

    Google Scholar 

  • Delalibera, I., de Moraes, G.J. and Sosa Gomez, D.R. 1999. --Epizootias de Neozygites floridana (Zygomycetes, Entomophthorales) e dinâmica populacional de ácaros fitoseídos predadores de Mononychellus tanajoa (Acari, Phytoseiidae e Tetranychidae) na Bahia. Rev. Bras. Entom., São Paulo 43: 287–291.

    Google Scholar 

  • Dick, G.L. and Buschman, L.L. 1995. Seasonal occurrence of a fungal pathogen, Neozygites adjarica (Entomophthorales: Neozygitaceae), infecting Banks grass mites, Oligonychus pratensis, and two-spotted spider mites, Tetranychus urticae (Acari: Tetranychidae), in field corn. J. Kansas Entomol. Soc. 68: 425–436.

    Google Scholar 

  • Dick, G.L., Buschman, L.L. and Ramoska, W.A. 1992. Description of a species of Neozygites infecting Oligonychus pratensis in the western great plains of the United States.Mycologia 84: 729–738.

    Google Scholar 

  • Dicke, M., Schütte, C. and Dijkman, H. 2000. Change in behavioral response to herbivoreinduced plant volatiles in a predatory mite population. J. Chem. Ecol. (in press).

  • Dissanaike, A.S. 1958. Experimental infection of tapeworms and oribatid mites with Nosema helminthorum. Experim. Parasitol. 7: 306–318.

    Google Scholar 

  • Dosse, G. 1958. --Ñber einige neue Raubmilbenarten (Acari: Phytoseiidae). Pflanzenschutsber. 21: 44–61.

    Google Scholar 

  • Dresner, E. 1949. Culture and use of entomogenous fungi for the control of insects. Contr. Boyce Thompson Inst. 15: 319–335.

    Google Scholar 

  • Erhardová, B. 1955. --Prvé nálezy Gregarin u rozto¡cu ¡ceskosl. Parasitol. 2: 35–37.

    Google Scholar 

  • Elliot, S.L. 1998. Ecology and epizootiology of Neozygites floridana, a pathogen of the cassava green mite. PhD Dissertation, Imperial College, Silwood Park, U.K., 177 pp.

  • Elliot, S.L., de Moraes, G.J., Delalibera, I., da Silva, C.A.D., Tamai, M.A. and Mumford, J.D. 2000. Potential of the mite-pathogenic fungus Neozygites floridana (Entomophthorales: Neozygitaceae) for control of the cassava green mite Mononychellus tanajoa (Acari: Tetranychidae). Bull. Ent. Res. 90: (in press).

  • Estes, Z.E. and Faust, R.M. 1965. The nucleic acid composition of a virus affecting the citrus red mite, Panonychus citri (McGregor). J. Invertebr. Pathol. 7: 259–260.

    Google Scholar 

  • Fisher, F.E. 1950. Two new species of Hirsutella Patouillard. Mycologia 42: 13–16.

    Google Scholar 

  • Fisher, F.E. 1951. An Entomophthora attacking citrus red mite. Fla. Entomol. 34: 83–88.

    Google Scholar 

  • Franzen, C. and Muller, A. 1999. Molecular techniques for detection, species differentiation, and phylogenetic analysis of microsporidia. Clin. Microbiol. Rev. 12: 243–285.

    Google Scholar 

  • Furtado, I.P., De Moraes, G.J. and Keller, S. 1996. Infection of Euseius citrifolius (Acari: Phytoseiidae) by an entomophthoralean fungus in Brazil. Rev. Ecossistema 21: 85–86.

    Google Scholar 

  • Gardner, W.A., Oetting, R.D. and Storey, G.K. 1982. Susceptibility of the two-spotted spider mite, Tetranychus urticae Koch, to the fungal pathogen Hirsutella thompsonii Fisher. Fla. Entomol. 65: 458–465.

    Google Scholar 

  • Gerson, U., Kenneth, R. and Muttath, T.I. 1979. Hirsutella thomsonii, a fungal pathogen of mites. II. Host-pathogen interactions. Ann. Appl. Biol. 91: 29–40.

    Google Scholar 

  • Geus, A. 1969. --Sporentierchen, Sporozoa. Die Gregarida der land-und süszwasserbewohnenden Arthropoden Mitteleuropas. In: Die Tierwelt Deutschlands und der angrenzenden Meeresteile nach ihren Merkmalen und nach ihrer Lebensweise, F. Dahl, M. Dahl and F. Peus (eds), Vol. 57. 608 pp. VEB Gustav Fisher Verlag, Jena, Germany.

    Google Scholar 

  • Gomi, K. and Gotoh, T. 1996. Host plant preference and genetic compatibility of the Kanzawa spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae). Appl. Ent. Zool. 31: 417–425.

    Google Scholar 

  • Gomi, K., Gotoh, T. and Noda, H. 1997. Wolbachia having no effect on reproductive incompatibility in Tetranychus kanzawai Kishida (Acari: Tetranychidae). Appl. Ent. Zool. 32: 485–490.

    Google Scholar 

  • Gotoh, T., Abe, T., Kurihara, A. and Suzuki, M. 1995. Genetic incompatibility in local populations of the spider mite, Tetranychus quercivorus Ehara et Gotoh (Acari: Tetranychidae). Appl. Ent. Zool. 30: 361–368.

    Google Scholar 

  • Gotoh, T., Gomi, K. and Nagata, T. 1999a. Incompatibility and host plant differences among populatons of Tetranychus kanzawai Kishida (Acari: Tetranychidae). Appl. Ent. Zool. 34: 551–561.

    Google Scholar 

  • Gotoh, T., Sugasawa, J., Nagata, T. 1999b. Reproductive compatibility of the two-spotted spider mite (Tetranychus urticae) infected with Wolbachia. Entomol. Sci. 2: 289–295.

    Google Scholar 

  • Grundschober, A., Tuor, U. and Aebi, M. 1998. In vitro cultivation and sporulation of Neozygites parvispora (Zygomycetes: Entomophthorales). Syst. Appl. Microbiol. 21: 461–469.

    Google Scholar 

  • Guo, Y.-L., Zuo, G.-S., Zhao, J.-H., Wang, N.-Y. and Jiang, J.-W. 1993. A laboratory test on the toxicity of thuringiensin to Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae). Chinese J. Biol. Contr. 9: 151–155.

    Google Scholar 

  • Hajek, A.E. 1997. Ecology of terrestrial fungal entomopathogens. Adv. Microbial Ecol. 15: 193–249.

    Google Scholar 

  • Hall, I.M., Hunter, D.K. and Arakawa, K.Y. 1971. The effect of the b-exotoxin fraction of Bacillus thuringiensis on the citrus red mite. J. Invertebr. Pathol. 18: 359–362.

    Google Scholar 

  • Hall, R.A., Hussey, N.W. and Mariau, D. 1980. Results of a survey of biological control agents of the coconut mite Eriophyes guerreronis. Oleagineux 35: 395–400.

    Google Scholar 

  • Hastriter, M.W., Kelly, D.J., Chan, T.C., Phang, O.W., Lewis, G.E. 1987. Evaluation of Leptotrombidium (Leptotrombidium) fletcheri (Acari: Trombiculidae) as a potential vector of Ehrlichia sennetsu. J. Med. Entomol. 24: 542–546.

    Google Scholar 

  • Hayes, S.F. and Burgdorfer, W. 1989. Interactions between rickettsial endocytobionts and their tick hosts. Insect endocytobiosis: morphology, physiology, genetics, evolution, W. Schwemmler and G. Gassner (eds), CRC Press, Boca Raton, FL.

    Google Scholar 

  • Hess, R.T. and Hoy, M.A. 1982. Microorganisms associated with the spider mite predator Metaseiulus (Typhlodromus) occidentalis: Electron microscope observations. J. Invertebr. Pathol. 40: 98–106.

    Google Scholar 

  • Hirt, R.P., Logsdon, J.M., Healy, B., Dorey, M.W., Doolittle, W.F. and Embley, T.M. 1999. Microsporidia are related to fungi: Evidence from the largest subunit of RNA polymerase II and other proteins. Proc. Natl. Acad. Sci. USA 96: 580–585.

    Google Scholar 

  • Hoy, M.A. and Cave, F.E. 1988. Premating and postmating isolation among populations of Metaseiulus occidentalis. Hilgardia 56: 1–20.

    Google Scholar 

  • Hoy, M.A. and Ouyang, Y.-L. 1987. Toxicity of b-exotoxin of Bacillus thuringiensis to Tetranychus pacificus and Metaseiulus occidentalis (Acari: Tetranychidae and Phytoseiidae). J. Econ. Entomol. 80: 507–511.

    Google Scholar 

  • Hughes, T.E. 1950. The physiology of the alimentary canal of Tyrophagus farinae. Q. J. Microsc. Sci. 91: 98–106.

    Google Scholar 

  • Huigens, M.E., Luck, R.F., Klaassen, R.H.G., Maas, M.F.P.M., Timmermans, M.J.T.N. and Stouthamer, R. 2000. Infectious parthenogenesis. Nature 405: 178–179.

    Google Scholar 

  • Humber, R.A. 1989. Synopsis of a revised classification for the Entomophthorales (Zygomycotina). Mycotaxon 34: 441–446.

    Google Scholar 

  • Humber, R.A., De Moraes, G.J. and Dos Santos, J.M. 1981. Natural infection of Tetranychus evansi (Acarina: Tetranychidae) by a Triplosorium sp. (Zygomycetes: Entomophthorales) in northeastern Brazil. Entomophaga 26: 421–425.

    Google Scholar 

  • Issi, I.V. and Lipa, J. 1968. Gurleya sokolovi sp.n., a microsporidian parasite of the water mite Limnochares aquatica (Linnaeus) (Acarina: Hydrachnellae), and a note on a gregarine infection in the same mite. J. Invertebr. Pathol. 10: 165–175.

    Google Scholar 

  • James, D.G. 1994. Biological control of earth mites in pasture using endemic natural enemies. In: Proc. 2nd National Workshop on Redlegged Earth Mite, Lucerne Flea and Blue Oat Mite, pp. 69–71. Rutherglen, Victoria, Australia.

  • Johanowicz, D.L. and Hoy, M.A. 1996. Wolbachia in a predator-prey system: 16S ribosomal DNA analysis of two phytoseiids (Acari: Phytoseiidae) and their prey (Acari: Tetranychidae). Ann. Ent. Soc. Amer. 89: 435–441.

    Google Scholar 

  • Johanowicz, D.L. and Hoy, M.A. 1998a. Experimental induction and termination of nonreciprocal reproductive incompatibilities in a parahaploid mite. Entomol. Exp. Appl. 87: 51–58.

    Google Scholar 

  • Johanowicz, D.L. and Hoy, M.A. 1998b. The manipulation of arthropod reproduction by Wolbachia endosymbionts. Fla. Entomol. 81: 310–317.

    Google Scholar 

  • Keller, S. 1991. Arthropod-pathogenic Entomophthorales of Switzerland. II. Erynia, Eryniopsis, Neozygites, Zoophthora and Tarichium. Sydowia 43: 39–122.

    Google Scholar 

  • Keller, S. 1997. The genus Neozygites (Zygomycetes, Entomophthorales) with special reference to species found in tropical regions. Sydowia 49: 118–146.

    Google Scholar 

  • Keller, S. and Wuest, J. 1983. Observations sur trois espèces de Neozygites (Zygomycetes: Entomophthoraceae). Entomophaga 28: 123–134.

    Google Scholar 

  • Kennedy, G.G. and Smitley, D.R. 1988. Method of controlling plant feeding mites with the fungus Neozygites floridana. US Patent 4,752,468, 7 pp.

  • Kenneth, R., Wallis, G., Olmert, Y and Halperin, J. 1971. A list of entomogenous fungi of Israel. Isr. J. Agric. Res. 21: 63–66.

    Google Scholar 

  • Kleespies, R.G., Radtke, J. and Bienefield, K. 2000. Virus-like particles found in the ectoparasitic bee mite Varroa jacobsoni Oudemans. J. Invertebr. Pathol. 75: 87–90.

    Google Scholar 

  • Klubertanz, Th.H., Pedigo, L.P. and Carlson, R.E. 1991. Impact of fungal epizootics on the biology and management of the two-spotted spider mite (Acari: Tetranychidae) in soybean. Environ. Entomol. 20: 731–735.

    Google Scholar 

  • Krieg, A. 1972. --Ñber die Wirkung von Bacillus thuringiensis-Präparaten auf Spinnmilbe (Tetranychidae). Anz. Schädlingsk. 45: 169–171.

    Google Scholar 

  • Larsson, J.I.L. 1990. Description of a new microsporidium of the water mite Limnochares aquatica and establishment of the new genus Napamichum (Microspora, Thelohaniidae). J. Invertebr. Pathol. 55: 152–161.

    Google Scholar 

  • Larsson, J.I.R., Steiner, M.Y. and Bjørnson, S. 1997. Intexta acarivora gen. et sp.n. (Microspora: Chytridiopsidae)-Ultrastructural study and description of a new microsporidian parasite of the forage mite Tyrophagus putrescentiae (Acari: Acaridae). Acta Prozool. 36: 295–304.

    Google Scholar 

  • Latgé, J.P., Perry, D.F., Prévost, M.C. and Samson, R.A. 1989. Ultrastructural studies of primary spores of Conidiobolus, Erynia, and related Entomophthorales. Can. J. Botany 67: 2576–2589.

    Google Scholar 

  • Leatherdale, D. 1965. Fungi infecting rust and gall mites (Acarina: Eriophyidae). J. Invertebr. Pathol. 7: 325–328.

    Google Scholar 

  • Leite, L.G., Smith, L, De Moraes, G.J. and Roberts, D.W. 2000. In vitro production of hyphal bodies of the mite pathogenic fungus Neozygites floridana. Mycologia 92: 201–207.

    Google Scholar 

  • Levine, N.D. 1985. Ehardovina n.g., Ascogregarina polynesiensis n.s., Eimeria golemanskii n.s., Isospora tamariscini n.sp., Gregarina kazumii n.nom., new combinations and emendations in the names of apocomplexan Protyozoa. J. Prozool. 32: 359–363.

    Google Scholar 

  • Levine, N.D. 1988. The Protozoan Phylum Apicomplexa. Vol. 1. CRC Press, Boca Raton, FL, 203 pp.

    Google Scholar 

  • Levine, N.D., Corliss, J.O., Cox, F.E.G., Deroux, G., Grain, J., Honigberg, B.M., Leedale, G.F., Loeblich III, A.R., Lom, J., Lynn, J., Merinfeld, E.G., Page, F.C., Poljansky, G., Sprague, V., Vavra, J. and Wallace, F.G. 1980. A newly revised classification of the Protozoa. J. Protozool. 27: 37–38.

    Google Scholar 

  • Lewis, G.C., Heard, A.J., Brady, B.L. and Minter, D.W. 1981. Fungal parasitism of the eriophyid mite vector of rye grass mosaic virus. In: Proc. 1981 Br. Crop Prot. Conf. Pests and Diseases, pp. 109–111.

  • Lighthart, B., Sewall, D. and Thomas, D.R. 1988. Effect of several stress factors on the susceptibility of the predatory mite, Metaseiulus occidentalis (Acari: Phytoseiidae), to the weak bacterial pathogen Serratia marcescens. J. Invertebr. Pathol. 52: 33–42.

    Google Scholar 

  • Lipa, J.J. 1962. Nosema sperchoni n.sp. (Microspordia), a new parasitic protozoan from the water mite Sperchon sp. (Hydracarina, Acarina). Bull. Acad. Pol. Sci, Serie Sci. Biol. 20: 435–437.

    Google Scholar 

  • Lipa, J.J. 1971. Microbial control of mites and ticks. In: Microbial Control of Insects and Mites, H.D. Burges and N.W. Hussey (eds), pp. 357–373. Academic Press, New York.

    Google Scholar 

  • Lipa, J.J. 1982. Nosema euzeti sp.n. and Gregarine euzeti sp.n., two new protozoan parasites of a mite Euzetes seminulum (O.F. Miller) (Acarina, Oribatei). Acta Protozoologica 21: 121–126.

    Google Scholar 

  • Liu, J.-C., Boucias, D.G., Pendland, J.C., Liu, W.-Z. and Maruniak, J. 1996. The mode of action of hirsutellin A on eukaryotic cells. J. Invertebr. Pathol. 67: 224–228.

    Google Scholar 

  • Malone, L.A. and McIvor, C.A. 1996. Use of nucleotide sequence data to identify a microsporidian pathogen of Pieris rapae (Lepidoptera, Pieridae). J. Invertebr. Pathol. 68: 231–238.

    Google Scholar 

  • McCoy, C.W. 1981. Pest control by the fungus Hirsutella thompsonii. In: Microbial Control of Insects, Mites and Plant Diseases, H.D. Burges (ed.), pp. 499–512. Academic Press, New York.

    Google Scholar 

  • McCoy, C.W. 1996. Pathogens of eriophyoids. In: Eriophyoid Mites-Their Biology, Natural Enemies and Control, E.E. Lindquist, M.W. Sabelis and J. Bruin (eds), pp. 481–490. Elsevier Science B.V., Amsterdam.

    Google Scholar 

  • McCoy, C.W. and Kanavel, R.F. 1969. Isolation of Hirsutella thompsonii from the citrus rust mite, Phyllocoptruta oleivora, and its cultivation on various synthetic media. J. Invertebr. Pathol. 14: 386–390.

    Google Scholar 

  • McCoy, C.W. and Selhime, A.G. 1977. The fungus pathogen, Hirsutella thompsonii and its potential use for control of the citrus mite in Florida. In: Proc. Int. Citrus Congr., Vol. 2, pp. 521–527. Murcia, Spain.

    Google Scholar 

  • McCoy, C.W. and Heimpel, A.M. 1980. Safety of the potential mycoacaricide, Hirsutella thompsonii, to vertebrates. Environm. Entom. 9: 47–49.

    Google Scholar 

  • McCoy, C.W., Hill, A.J. and Kanavel, R.F. 1975. A liquid medium for the large-scale production of Hirsutella thompsonii in submerged culture. J. Invertebr. Pathol. 19: 370–374.

    Google Scholar 

  • McEnroe, W.D. 1961. Guanine excretion by the two-spotted spider mite (Tetranychus telarius (L.)). Ann. Entomol. Soc. Am. 54: 926–926.

    Google Scholar 

  • Merçot, H. and Poinsot, D. 1998....and discovered on Mount Kilamanjaro. Nature 391: 853–853.

    Google Scholar 

  • Mi¸etkiewski, R., Bałazy, S. and Van der Geest, L.P.S. 1993. Observations on a mycosis of spider mites (Acari: Tetranychidae) caused by Neozygites floridana in Poland. J. Invertebr. Pathol. 61: 317–319.

    Google Scholar 

  • Milner, R.J. 1985. Neozygites acaridis (Petch) comb. nov.: An entomophthoralean pathogen of the mite, Macrocheles peregrinus, in Australia. Trans. Br. Mycol. Soc. 85: 641–647.

    Google Scholar 

  • Minter, D.W. and Brady, B.L. 1980. Mononematous species of Hirsutella. Trans. Br. Mycol. Soc. 74: 271–282.

    Google Scholar 

  • Minter, D.W., Brady, B.L. and Hall, R.A. 1983. Five Hyphomycetes isolated from eriophyid mites. Trans. Br. Mycol. Soc. 81: 455–471.

    Google Scholar 

  • Moniez, R. 1887. --Observations pour la révision des Microsporidies. C.R. Acad. Sci. 104: 1312–1314.

    Google Scholar 

  • Moore-Landecker, E. 1996. Fundamentals of the Fungi, 4th edition, 574 pp. Prentice Hall, Upper Sadle River, New Jersey.

    Google Scholar 

  • Mozes-Koch, R., Edelbaum, O., Livneh, O., Sztejnberg, A., Uziel, A., Gerson, U. and Sela, I. 1995. Identification of Hirsutella species, isolated within a species and heterokaryons by random amplified polymorphic DNA (RAPD). Z. Pflanzenkrankh Pflanzensch. 102: 284–290.

    Google Scholar 

  • Muma, M.H. 1955. Factors contributing to the natural control of citrus insects and mites in Florida. J. Econ. Entomol. 48: 432–438.

    Google Scholar 

  • Munderloh, U.G. and Kurtti, T.J. 1995. Cellular and molecular interrelationships between ticks and prokaryotic tick-borne pathogens. Insect Mol. Biol. 3: 63–66.

    Google Scholar 

  • Noda, H., Munderloh, U.G. and Kurtti, T.J. 1997. Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl. Environ. Microbiol. 63: 3926–3932.

    Google Scholar 

  • Odongo, B., Odindo, M.O., Brownbridge, M. and Kumar, R. 1998. Comparative biological efficacy of Hirsutella thompsonii and Neoseiulus teke for cassava mite (Mononychellus tanajoa) suppression. Biosci. Technol. 8: 345–355.

    Google Scholar 

  • Oduor, G.I. 1995. Abiotic factors and the epizootiology of Neozygites cf. Floridana, a fungus pathogenic to the cassava green mite. PhD Dissertation, University of Amsterdam, 101 pp.

  • Oduor, G.I., De Moraes, G.J., Yaninek, J.S. and Van der Geest, L.P.S. 1995a. Effect of temperature, humidity and photoperiod on mortality of Mononychellus tanajoa (Acari: Tetranychidae) Infected by Neozygites cf. floridana (Zygomycetes: Entomophthorales). Exp. Appl. Acarol. 19: 571–579.

    Google Scholar 

  • Oduor, G.I., Yaninek, J.S., Van der Geest, L.P.S. and De Moraes, G.J. 1995b. Survival of Neozygites cf. floridana (Zygomycetes: Entomophthorales) in mummified cassava green mites and the viability of its primary conidia. Exp. Appl. Acarol. 19: 479–488.

    Google Scholar 

  • Oduor, G.I., De Moraes, G.J., Van der Geest, L.P.S. and Yaninek, J.S. 1996a. Production and germination of primary conidia of Neozygites floridana (Zygomycetes: Entomophthorales) under constant temperatures, humidities, and photoperiods). J. Invertebr. Pathol. 68: 213–222.

    Google Scholar 

  • Oduor, G.I., Yaninek, J.S., Van der Geest, L.P.S. and De Moraes, G.J. 1996b. Germination and viability of capilliconidia of Neozygites floridana (Zygomycetes: Entomophthorales) under constant temperature, humidity and light conditions). J. Invertebr. Pathol. 67: 267–278.

    Google Scholar 

  • Oduor, G.I., De Moraes, G.J., Van der Geest, L.P.S. and Yaninek, J.S. 1997a. The effect of pathogen dosage on the pathogenicity of Neozygites floridana (Zygomycetes: Entomophthorales) to Mononychellus tanajoa (Acari: Tetranychidae). J. Invertebr. Pathol. 70: 127–130.

    Google Scholar 

  • Oduor, G.I., Sabelis, M.W., Lingeman, R., De Moraes, G.J. and Yaninek, J.S. 1997b. Modelling fungal (Neozygites cf. Floridana) epizootics in local populations of cassava green mite (Mononychellus tanajoa). Exp. Appl. Acarol. 21: 485–506.

    Google Scholar 

  • Omoto, C. and McCoy, C.W. 1998. Toxicity of purified fungal toxin hirsutellin A to the citrus rust mite Phyllocoptruta oleivora (Ash). J. Invertebr. Pathol. 72: 319–322.

    Google Scholar 

  • Payne, J., Cannon, R.J.C. and Bagley, A.L. 1994. Bacillus thuringiensis isolates for controlling acarides. US Patent 5,211,946, 8 pp.

  • Payne, J., Cannon, R.J.C. and Ralph, A.L. 1994. Bacillus thuringiensis isolates for controlling acarides. US Patent 5,350,576, 20 pp.

  • Peña, J.E., Osborne, L.S. and Duncan, R.E. 1996. Potential of fungi as biocontrol agents of Polyphagotarsonemus latus (Acari: Tarsonemidae). Entomophaga 41: 27–36.

    Google Scholar 

  • Perrot-Minnot,M.-J. and Norton, R.A. 1997. Obligate thelytoky in oribatid mites: no evidence for Wolbachia inducement. Can. Entomol. 129: 691–696.

    Google Scholar 

  • Petch, T. 1944. Notes on entomogenous fungi. Trans. Br. Mycol. Soc. 27: 81–93.

    Google Scholar 

  • Poinar, G. Jr. and Poinar, R. 1998. Parasites and pathogens of mites. Annu. Rev. Entomol. 43: 449–469.

    Google Scholar 

  • Purrini, K. 1984. Two new coccidian parasites of the genus Adelina (Adeleidae, Coccidia) parasitizing oribatid mite Nothrus silvestris (Oribatei, Acarina) and springtail Neanura muscorum (Collembola, Apterygota) in forest soil. Arch. Protistenk. 128: 99–107.

    Google Scholar 

  • Purrini, K. and Bäumler W. 1976. --Nosema ptyctimae n.sp., eine neue Mikrosporidie aus Rhysotritia ardua C.L. Koch (Fam. Phthiracaridae, Ptyctima, Acarina). Anz. Schädlingskde., Pflanzenschutz, Umweltschutz 49: 169–171.

    Google Scholar 

  • Purrini, K. and Ormieres, R. 1981. --Uber vier neue Eugregarinen-Arten (Eugregrarinida, Sporozoa) der Hornmilben (Oribatei, Acarina). Zool. Beitr., 27: 123–132.

    Google Scholar 

  • Purrini, K. and Weiser, J. 1981. Eight new microsporidian parasites of moss-mites (Oribatei, Acarina) in forest soil. Z. angew. Entomol. 91: 217–224.

    Google Scholar 

  • Purrini, K., Bukva, V. and Bäumler, W. 1979. Sporozoen in Hornmilben (Oribatei, Acarina) aus Waldböden Süddeutschlands nebst Beschreibug von Gregarina postneri n.sp. und G. fuscozetis n.sp. (Gregarinida, Sprorozoa, Protozoa). Pedobiologia, 19: 329–339.

    Google Scholar 

  • Putman, W.L. 1970. Occurrence and transmission of a virus disease of the European red mite, Panonychus ulmi. Can. Entomol. 102: 305–321.

    Google Scholar 

  • Putman, W.L. and Herne, D.H.C. 1966. The role of predators and other biotic agents in regulating the population density of phytophagous mites in Ontario peach orchards. Can. Entomol. 98: 808–820.

    Google Scholar 

  • Ramaseshiah, G. 1971. Occurrence of an Entomophthora on tetranychid mites in India. J. Invertebr. Pathol. 24: 218–223.

    Google Scholar 

  • Reed, D.K. 1981 Control of mites by non-occluded viruses. In: Microbial Control of Pests and Plant Diseases 1970–1980, H.D. Burges (ed.), pp. 427–432. Academic Press, New York, NY.

    Google Scholar 

  • Reed, D.K. and Hall, I.M. 1972. Electron microscopy of a rod-shaped non-inclusion virus infecting the citrus red mite, Panonychus citri. J. Invertebr. Pathol. 20: 272–278.

    Google Scholar 

  • Reed, D.K. and Desjardins, P.R. 1978. Isometric virus-like particles from citrus red mites, Panonychus citri. J. Invertebr. Pathol. 31: 188–193.

    Google Scholar 

  • Reed, D.K., Shaw, J.J. and Rich, J.E. 1972. Increased infection through laboratory culturing of citrus red mites collected from diseased populations. J. Econ. Entomol. 65: 1507.

    Google Scholar 

  • Reed, D.K., Rich J.E. and Shaw J.G. 1974. Inhibition of formation of birefringent crystals by high humidity by citrus red mite infected with virus. J. Invertebr. Pathol. 23: 285–288.

    Google Scholar 

  • Ridsdill-Smith, T.J. and Annells, A.J. 1997. Seasonal occurrence and abundance of redlegged earth mite Halotydeus destructor (Acari: Penthaleidae) in annual pastures of southwestern Australia. Bull. Entomol. Res. 87: 413–423.

    Google Scholar 

  • Roberts, L.W., Rapmund, G. and Cadigan, F.C. 1977. Sex ratios in Rickettsia tsutsugamushiinfected and noninfected colonies of Leptotrombidium (Acari: Trombiculidae). J. Med. Entom. 14: 89–92.

    Google Scholar 

  • Rombach, M.C. and Gillespie, A.T. 1988. Entomogenous Hyphomycetes for insect and mite control on greenhouse crops. Biocontr. News and Inform. 9: 7–18.

    Google Scholar 

  • Roux, V. and Raoult, D. 1995. Phylogenetic analysis of the genus Rickettsia by 16S rDNA analysis. Res. Microbiol. 146: 385–396.

    Google Scholar 

  • Royalty, R.N., Hall, F.R. and Taylor, R.A.J. 1990. Effects of thuringiensin on Tetranychus urticae (Acari: Tetranychidae) mortality, fecundity, and feeding. J. Econ. Entomol. 83: 792–798.

    Google Scholar 

  • Saba, F. 1971. Population dynamics of some tetranychids in subtropical Florida. In: Proceedings 3rd International Congress of Acarology, Prague, Junk, The Hague, pp. 237–240.

  • Saleh, S.M., Kelada, N.L. and Shader, N. 1991. Control of European house dust mite Dermatophagoides pteronyssinus (Trouessart) with Bacillus spp. Acarologia 32: 257–260.

    Google Scholar 

  • Samish, M. and ¡Rehá¡cek, J. 1999. Pathogens and predators of ticks and their potential in biological control. Annu. Rev. Entomol. 44: 159–182.

    Google Scholar 

  • Sammataro, D., Gerson, U. and Needham, G. 2000. Parasitic mites of honey bees: life history, implications and impact. Ann. Rev. Entomol. 45: 519–548.

    Google Scholar 

  • Samson, R.A. and McCoy, C.W. 1982. A new fungal pathogen of the scavenger mite, Tydeus gloveri. J. Invertebr. Pathol. 40: 216–220.

    Google Scholar 

  • Samson, R.A., McCoy, C.W. and O'Donnell, K.L. 1980. Taxonomy of the acarine parasite Hirsutella thompsonii. Mycologia 72: 359–377.

    Google Scholar 

  • Sanassi, A. and Amirthavalli, S. 1970. Infection of the velvet mite, Thrombidium gigas by Aspergillus flavus. J. Invertebr. Pathol. 16: 54–56.

    Google Scholar 

  • Sanassi, A. and Oliver, J.H. 1971. Integument of the velvet-mite, Dinothrombium giganteum, and histopathological changes caused by the fungus Aspergillus flavus. J. Invertebr. Pathol. 17: 354–365.

    Google Scholar 

  • Schliesske, J. 1992. The free living gall mite species (Acari: Eriophyoidea) on pomes and stone fruits and their natural enemies in northern Germany. Acta Phytopath. Entomol. Hungarica 27: 583–586.

    Google Scholar 

  • Schütte, C., Hulshof, J., Dijkman, H. and Dicke, M. 1995. Change in foraging behaviour of the predatory mite Phytoseiulus persimilis: some characteristics of a mite population that does not respond to herbivore-induced synomones. Proc. Exp. Appl. Entomol., NEV, Amsterdam 6: 133–139.

    Google Scholar 

  • Schütte, C., Van Baalen, P., Dijkman, H. and Dicke, M. 1998. Change in foraging behaviour of the predatory mite Phytoseiulus persimilis after exposure to dead conspecifics and their products. Entomol. Exp. Appl. 88: 295–300.

    Google Scholar 

  • Šebesta, K., Farkaš, J., Korská, K. and Va¡nkova, J. 1981. Thuringiensin, the beta-exotoxin of Bacillus thuringiensis. In: Microbial Control of Pests and Diseases 1970–1980, H.D. Burges (ed.), pp. 249–281. Academic Press, New York, NY.

    Google Scholar 

  • Shaw, J.G., Moffitt, C. and Sciven, G.T. 1967. Biotic potential of phytoseiid mites fed on virus-infected citrus red mites. J. Econ. Entomol. 60: 1751–1752.

    Google Scholar 

  • Shaw, J.G., Chambers, D.L. and Tashiro, H. 1968. Introducing and establishing the noninclusion virus of the citrus red mite in citrus groves. J. Econ. Entomol. 61: 1352–1355.

    Google Scholar 

  • Shaw, J.G., Reed, D.K., Stewart, J.R., Gorden, J.M. and Rich, J.E. 1971. Mechanical collection of diseased citrus red mites as a method of providing inoculum. J. Econ. Entomol. 64: 1223–1224.

    Google Scholar 

  • Smith, J.W. and Furr, R.E. 1975. Spider mites and some natural control agents found in cotton in the Delta area of Mississippi. Environ. Entomol. 4: 559–560.

    Google Scholar 

  • Smith, K.M. and Cressman, A.W. 1962. Birefringent crystals in virus-diseased citrus red mites. J. Insect Pathol. 4: 229–236.

    Google Scholar 

  • Smith, K.M., Hill, G.J., Munger, F. and Gilmore, J.E. 1959. A suspected virus disease of the citrus red mite Panonychus citri. Nature (London) 184: 70.

    Google Scholar 

  • Smitley, D.R., Brooks, W.M. and Kennedy, G.G. 1986a. Environmental effects on production of primary and secondary conidia, infection and pathogenesis of Neozygites floridana, a pathogen of the two-spotted spider mite, Tetranychus urticae. J. Invertebr. Pathol. 47: 325–332.

    Google Scholar 

  • Smitley, D.R., Kennedy, G.G. and Brooks, W.M. 1986b. Role of the entomogenous fungus, Neozygites floridana, in population declines of the two-spotted spider mite, Tetranychus urticae, on field corn. Entomol. Exp. Appl. 41: 255–264.

    Google Scholar 

  • Sologic, H.D. and Rodriguez, J.G. 1971. Microorganisms associated with the two-spotted spider mite Tetranychus urticae. J. Invert. Pathol. 17: 48–52.

    Google Scholar 

  • Solter, L.F. and Maddox, J.V. 1998. Timing of an early sporulation sequence of microsporidia in the genus Vairimorpha (Microsporidia: Burenellidae). J. Invertebr. Pathol. 72: 323–329.

    Google Scholar 

  • Sosa Gomez, D.R. 1991. Production of three Hirsutella thompsonii varieties on semi-solid media and differential effects of two fungicides. Anais da Sociedade Entomólogica do Brasil 20: 155–163.

    Google Scholar 

  • Sosa Gomez, D.R. and Nasca, A.J. 1983. --Primera cita del hongo patógeno de ácaros, Hirsutella thompsonii Fisher, 1950 para la Republica Argentina. CIRPON, Rev. Invest. 1: 137–141.

    Google Scholar 

  • Sosa Gomez, D.R. and Moscardi, F. 1991. Microbial control and insect pathology in Argentina. Ciência e Cultura 43: 375–379.

    Google Scholar 

  • Sosa Gomez, D.R., Ricci, J.G. and Nasca, A.J. 1985. --Efecto de Hirsutella thompsonii, var. thompsonii, sobre larvas y adultos de Coccidophilus citricola Brethesy Lindorus lophanthae (Blaisdell) (Col., Coccinellidae). CIRPON, Rev. Invest. 3: 73–77.

    Google Scholar 

  • Sosa Gomez, D.R., Manzur, J. and Nasca, A.J. 1987. Influence of some pesticides on three varieties of Hirsutella thompsonii Fisher (Hyphomycetes:Moniliales). Anais de Sociedade Entomolólogica do Brasil 16: 399–408.

    Google Scholar 

  • Sosa Gómez, D.R., Almeida, A.M., Santos, M. and Oliveira, L.J. 1996. --Adendo aos entomopatógenos que ocorrem na cultura da soja e da erva mate. Vth Symposium on Biological Control, Foz de Iguaçu, Brazil, p. 318.

  • Speare, A.T. and Yothers, W.W. 1924. Is there an entomogenous fungus attacking the citrus rust mite in Florida? Science 40: 41–42.

    Google Scholar 

  • Sprague, V., Becnel, J.J. and Hazard, E.I. 1992. Taxonomy of phylum Microspora. Critical Rev. Microbiol. 18: 285–395.

    Google Scholar 

  • Steiner, M. 1993. Quality control requirements for pest biological control agents. Alberta Government Publication AECV93-R6, Alberta Environmental Centre, Vegrevile, AB.

    Google Scholar 

  • Steinhaus, E.A. 1959. Possible virus disease in European red mite. J. Insect Pathol. 1: 435–437.

    Google Scholar 

  • Steinhaus, E.A. and Marsh, G.A. 1962. Reports of diagnosis of diseased insects 1951–1961. Hilgardia 33: 349–490.

    Google Scholar 

  • Stouthamer, R., Breeuwer, J.A.J. and Hurst, G.D.D. 1999. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annual. Rev. Microbiol. 53: 71–102.

    Google Scholar 

  • Suitor, E.C. and Weiss, E. 1961. Isolation of a rickettsial-ike microorganism (Wolbachia persica, n.sp) from Argas persicus (Oken). J. Inf. Dis. 108: 95–106.

    Google Scholar 

  • Susilo, F.X., Nordin, G.L. and Brown, G.C. 1994. Age-specific and inter-sexual susceptibility of two-spotted spider mite, Tetranychus urticae Koch, to Neozygites floridana Weiser and Muma. J. Kansas Entomol. Soc. 67: 293–296.

    Google Scholar 

  • Šut'áková, G. 1988. Electron microscopic study of developmental stages of Rickettsiella phytoseiuli in Phytoseiulus persimilis Athias-Henriot (Gamasoidea: Phytoseiidae) mites. Acta Virol. 32: 50–54.

    Google Scholar 

  • Šut'áková, G. 1994. Phenomenon of Rickettsiella phytoseiuli in Phytoseiulus persimilis mite. Acta microbiol. Immunol. Hungarica 41: 411–414.

    Google Scholar 

  • Šut'áková, G. and Rüttgen, F. 1978. Rickettsiella phytoseiuli and virus-like particles in Phytoseiulus persimilis (Gamasoidea: Phytoseiidae) mites. Acta Virol. 22: 333–336.

    Google Scholar 

  • Šut'áková, G. and Arutunyan, E.S. 1990. The spider mite predator Phytoseiulus persimilis and its association with microorganisms: an electron microscope study. Acta Entomol. Bohemoslov. 87: 431–434.

    Google Scholar 

  • Sztejnberg, A., Doron-Shloush, S. and Gerson, U. 1997. The biology of the acaropathogenic fungus Hirsutella kirchneri. Biocontrol Sci. Technol. 7: 577–590.

    Google Scholar 

  • Tamai,M.A., Alves, N.B. and Neves, P.S. 1999. --Patogenicidade de Beauveria bassiana (Bals.) Vuill. ao ácaroTetrnychus urticae Kock. Scientia Agricola 56: 285–288.

    Google Scholar 

  • Tamai, M.A., Alves, S.B., Lopes, R.B. and Neves, P.S. 1998. --Avaliação de fungos entomopatogênicos para o controle de Tetranychus urticae Koch. Abstracts 17th Brazil. Congr. Entomol., Rio de Janeiro, p. 1066.

  • Tamura, A., Ohashi, N., Urakami, H. and Miyamura, S. 1995. Classification of Rickettsia tsutsugamushi in a new genus, Orientia gen. nov., as Orientia tsutsugamushi comb. nov. Int. J. Syst. Bacteriol. 45: 589–591.

    Google Scholar 

  • Tanada, Y. and Kaya, H.K. 1993. Insect Pathology. Academic Press, New York, 666 pp.

    Google Scholar 

  • Tanigoshi, L.K. 1982. Advances in the knowledge of the biology of the Phytoseiidae. In: Recent Advances in Knowledge of Phytoseiidae, M. Hoy (ed.), pp 1–22. Division of Agricultural Sciences, Special Publication 3284, University of California, Berkeley.

    Google Scholar 

  • Tanigoshi, L.K., Fagerlund, J. and Nishio-Wong, J.Y. 1981. Significance of temperature and food resources to the developmental biology of Amblyseius hibisci (Chant) (Acarina, Phytoseiidae). Z. Ang. Entomol. 92: 409–419.

    Google Scholar 

  • Tanzini, M.R., Alves, S.B., Tamai, M.A., De Moraes, G.J. and Ferla, N.J. 2000. An epizootic of Calacarus heveae (Acari: Eriophyidae) by Hirsutella thompsonii on rubber trees. Exp. Appl. Acarol. 24: 141–144.

    Google Scholar 

  • Thomas, G.M. and Poinar, G.O. 1973. Report of diagnoses of diseased insects. Hilgardia 42: 261–360.

    Google Scholar 

  • Tkahashi, M., Urakami, H., Yoshida, Y., Furuya, Y., Misumi, H., Hori, E., Kawamura, Jr., A. and Tanaka, H. 1997. Occurrence of high ratio of males after introduction of minocycline in a colony of Leptotrombidium fletcheri infected with Orientia tstsugamushi. Eur. J. Epidemiol. 13: 79–86.

    Google Scholar 

  • Tsagkarakou, A., Guillemaud, T., Rousset, F. and Navajas, M. 1996. Molecular identification of a Wolbachia endosymbiont in a Tetranychus urticae strain (Acari: Tetranychidae). Insect Molec. Biol. 5: 217–221.

    Google Scholar 

  • Van de Peer, Y. and DeWachter, R. 1994. TREECON forWindows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Applic. Biosci. 10: 569–570.

    Google Scholar 

  • Van de Peer, Y., De Rijk, P., Wuyts, J., Winkelmans, T. and DeWachter, R. 2000. The european small subunit ribosomal RNA database. Nucleic Acids Res. 28: 175–176.

    Google Scholar 

  • Urueta, E.J. 1980. --Control del ácaro Retracus elaeis Keifer mediante el hongo Hirsutella thompsonii Fisher y inhibición de este por dos fungicidas. Rev. Colomb. Entomol. 6: 3–9.

    Google Scholar 

  • Van der Geest, L.P.S. 1985. Pathogens of spider mites. In: SpiderMites. Their Biology, Natural Enemies and Control,W. Helle and M.W. Sabelis (eds), Vol. 1B, pp. 247–258. World Crop Pests.

  • Van Opijnen, T. and Breeuwer, J.A.J. 1999. High temperatures eliminate Wolbachia, a cytoplasmic incompatibility inducing endosymbiont, from the two-spotted spider mite. Exp. Appl. Acarol. 23: 871–881.

    Google Scholar 

  • Van Winkelhoff, A.J. and McCoy, C.W. 1984. Conidiation of Hirsutella thompsonii var. synnematosa in submerged culture. J. Invertebr. Pathol. 43: 59–68.

    Google Scholar 

  • Vey, A., Quiot, J.M., Mazet, I. and McCoy, C.W. 1993. Toxicity and pathology of crude broth filtrate produced by Hirsutella thompsonii var. thompsonii in shake culture. J. Invertebr. Pathol. 61: 131–137.

    Google Scholar 

  • Walter, D.L. 1999. Cryptic inhabitants of a noxious weed: mites (Arachnida: Acari) on Lantana camara L. invading forests in Queensland. Austr. J. Entomol. 38: 197–200.

    Google Scholar 

  • Weisburg, W.G., Woese, C.R., Dobson, M.E. and Weiss, E. 1985. A common origin of Rickettsiae and certain plant pathogens. Science 230: 556–558.

    Google Scholar 

  • Weisburg, W.G., Dobson, M.E., Samuel, J.E., Dasch, G.A., Mallavia, L.P., Baca, O., Mandelco, L., Sechrest, J.E., Weiss, E. and Woese, C.R. 1989. Phylogenetic diversity of the Rickettsiae. J. Bacteriol. 171: 4202–4206.

    Google Scholar 

  • Weiser, J. 1968. Triplosporium tetranychi sp.n. (Phycomycetes: Entomophthoraceae), a fungus infecting the red spider mite Tetranychus althaeae Hanst. Folia Parasitol. (Prague) 15: 115–122.

    Google Scholar 

  • Weiser, J. 1956. Nosema steinhausi n.sp., nova mikrosporidie z rostoãe Tyrophagus noxius (Acarina, Tyroglyphidae). ¡Ceskoslov. Parasitol. 11: 187–192.

    Google Scholar 

  • Weiser, J. and Muma, M.H. 1966. Entomophthora floridana n.s. (Phycomycetes: Entomophthoraceae), a parasite of the Texas citrus mite Tetranychus banksi. Fl. Entomol. 49: 155–159.

    Google Scholar 

  • Weiss, E. and Moulder, J.W. 1984. Order I. Rickettsiales Gieszczkiewicz. Bergey's Manual of Systematic bacteriology, Vol. 1, N.R. Krieg and J.G. Holt (eds), Williams and Wilkins, Baltimore.

  • Werren, J.H., Zhang, W. and Guo, L.R. 1995a. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc. Roy. Soc. London B 261: 55–63.

    Google Scholar 

  • Werren, J.H., Windsor, D. and Guo, L. 1995b. Distribution of Wolbachia among neotropical arthropods. Proc. Roy. Soc. London B 262: 197–204.

    Google Scholar 

  • Yang, Y., Allen, J.C., Knapp, J.L. and Stansly, P.A. 1997. An age-structures model of citrus rust mite: a fruit-mite-fungal pathogen system. Ecol. Model. 104: 71–85.

    Google Scholar 

  • Yaninek, J.S. 1988. Continental dispersal of the cassava green mite, an exotic pest in Africa, and implications for biological control. Exp. Appl. Acarol. 4: 211–224.

    Google Scholar 

  • Yaninek, J.S., Saizonou, S., Onzo, A., Zannou, I. and Gnanvossou, D. 1996. Seasonal and habitat variability in the fungal pathogens, Neozygites cf. floridana and Hirsutella thompsonii, associated with cassava green mites in Benin, West Africa. Biocontrol Sci. Technol. 6: 23–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Geest, L., Elliot, S., Breeuwer, J. et al. Diseases of Mites. Exp Appl Acarol 24, 497–560 (2000). https://doi.org/10.1023/A:1026518418163

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026518418163

Navigation