Skip to main content
Log in

A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We present a universal statistical model for texture images in the context of an overcomplete complex wavelet transform. The model is parameterized by a set of statistics computed on pairs of coefficients corresponding to basis functions at adjacent spatial locations, orientations, and scales. We develop an efficient algorithm for synthesizing random images subject to these constraints, by iteratively projecting onto the set of images satisfying each constraint, and we use this to test the perceptual validity of the model. In particular, we demonstrate the necessity of subgroups of the parameter set by showing examples of texture synthesis that fail when those parameters are removed from the set. We also demonstrate the power of our model by successfully synthesizing examples drawn from a diverse collection of artificial and natural textures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, C.H. and Langer, W.D. 1997. Statistical models of image texture. Technical Report, Washington U. Medical School. Available at ftp://shifter.wustl.edu/pub/.

  • Bell, A.J. and Sejnowski, T.J. 1997. The ‘independent components’ of natural scenes are edge filters. Vision Research, 37(23):3327–3338.

    Google Scholar 

  • Bergen, J.R. and Adelson, E.H. 1986. Visual texture segmentation based on energy measures. J. Opt. Soc. Am. A, 3:99.

    Google Scholar 

  • Bergen, J.R. and Landy, M.S. 1991. “Computational modeling of visual texture segregation: Computational models of visual processing. M.S. Landy and J.A. Morshon (Eds.). MIT Press, Cambridge, MA, pp. 253–271.

    Google Scholar 

  • Bouman, C.A. and Shapiro, M. 1994. A multiscale random field model for Bayesian image segmentation. IEEE Trans. Image Proc., 3(2).

  • Bovik, A.C., Clark, M., and Geisler, W.S. 1990. Multichannel texture analysis using localized spatial filters. IEEE Pat. Anal. Mach. Intell., 12(1):55–73.

    Google Scholar 

  • Bovik, A.C., Clark, M., and Geisler, W.S. 1992. Localized measurements of emergent image frequencies by Gabor wavelets. IEEE Pat. Anal. Mach. Intell., 38:691–712.

    Google Scholar 

  • Brodatz, P. 1996. Textures: A Photographic Album for Artists and Designers. Dover: New York

    Google Scholar 

  • Buccigrossi, R.W. and Simoncelli, E.P. 1999. Image compression via joint statistical characterization in the wavelet domain. IEEE Trans. Image Proc., 8(12):1688–1701.

    Google Scholar 

  • Cadzow, J.A., Wilkes, D.M., Peters, R.A., II, and Li, X. 1993. Image texture synthesis-by-analysis usingmoving-average models. IEEE Trans on Aerospace and Electrical Systems, 29(4):1110–1122.

    Google Scholar 

  • Caelli,.M. and Julesz, B. 1978. Experiments in the visual perception of texture. Biol. Cybernetics, 28:167–175.

    Google Scholar 

  • Cano, D. and Minh, T.H. 1988. Texture synthesis using hierarchical linear transforms. Signal Processing, 15:131–148.

    Google Scholar 

  • Chen, P.C. and Pavlidis, T. 1983. Segmentation by texture using correlation. IEEE Pat. Anal. Mach. Intell., 5(1):64–69.

    Google Scholar 

  • Cross, G. and Jain, A. 1983. Markov random field texture models. IEEE Trans. PAMI, 5:25–39.

    Google Scholar 

  • Daubechies, I. 1988. Orthonormal bases of compactly supported wavelets. Comm. on Pure and Appl. Math., 41:909–996.

    Google Scholar 

  • Daugman. J.G. 1988. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. IEEE Trans. Acoust. Speech Signal Proc., 36(7):1169–1179.

    Google Scholar 

  • Daugman, J.G. 1989. Entropy reduction and decorrelation in visual coding by oriented neural receptive fields. IEEE Trans. Biomedical Engineering, 36(1):107–114.

    Google Scholar 

  • Daugman, J.G. and Kammen, D.M. 1986. Pure orientation filtering: A scale-invariant image-processing tool for perception research and data compression. Behavior Research Methods, Instruments, & Computers, 18(6):559–564.

    Google Scholar 

  • De Bonet, J. and Viola, P. 1997. A non-parametric multi-scale statistical model for natural images. In Adv. in Neural Info Processing, Vol. 9. MIT Press.

  • Derin, H. and Elliott, H. 1987. Modeling and segmentation of noisy and textured images using Gibbs random fields. IEEE Pat. Anal. Mach. Intell., 9(1):39–55.

    Google Scholar 

  • Diaconis, P. and Freedman, D. 1981. On the statistics of vision: The Julesz conjecture. J. Math. Psychol., 24:112–118.

    Google Scholar 

  • Efros, A.A. and Leung, T.K. 1999. Texture synthesis by nonparameteric sampling. In Proc. Int'l Conference on Computer Vision, Corfu.

  • Faugeras, O.D. and Pratt, W.K. 1980. Decorrelation methods of texture feature extraction. IEEE Pat. Anal. Mach. Intell., 2(4):323–332.

    Google Scholar 

  • Field, D.J. 1987. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A, 4(12):2379–2394.

    Google Scholar 

  • Francos, J.M., Meiri, A.Z., and Porat, B. 1993. A unified texture model based on a 2-DWold-like decomposition. IEEE Trans. Signal Proc., 41(8):2665–2678.

    Google Scholar 

  • Gagalowicz, A. 1981. A new method for texture fields synthesis: Some applications to the study of human vision. IEEE Pat. Anal. Mach. Intell., 3(5):520–533.

    Google Scholar 

  • Geman, S. and Geman, D. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Pat. Anal. Mach. Intell., 6:721–741.

    Google Scholar 

  • Graham, N. 1989. Visual Pattern Analyzers. Oxford University Press: New York.

    Google Scholar 

  • Hassner, M. and Sklansky, J. 1980. The use of Markov random fields as models of texture. Comp. Graphics Image Proc., 12:357–370.

    Google Scholar 

  • Heeger, D. and Bergen, J. 1995. Pyramid-based texture analysis/synthesis. In Proc. ACM SIGGRAPH.

  • Hertzmann, A. 1998. Painterly rendering with curved brush strokes of multiple sizes. In Proc. ACM SigGraph, pp. 453–460.

  • Hirani, A.N. and Totsuka, T. 1996. Combining frequency and spatial domain information for fast interactive image noise removal. In ACM SIGGRAPH, pp. 269–276.

  • Jaynes, E.T. 1957. Information theory and statistical mechanics. Phys. Rev., 106:620–630.

    Google Scholar 

  • Jaynes, E.T. 1978. Where do we stand on maximum entropy? In The Maximal Entropy Formalism, R.D. Levine and M. Tribus (Eds.). MIT Press: Cambridge, MA.

    Google Scholar 

  • Julesz, B. 1962. Visual pattern discrimination. IRE Trans. Info Theory, IT-8:84–92.

    Google Scholar 

  • Julesz, B. 1981. Textons, the elements of texture perception and their interactions. Nature, 290:91–97.

    Google Scholar 

  • Julesz, B., Gilbert, E.N., Shepp, L.A., and Frisch, H.L. 1973. Inability of humans to discriminate between visual textures that agree in second-order statistics—revisited. Perception, 2:391–405.

    Google Scholar 

  • Julesz, B., Gilbert, E.N., and Victor, J.D. 1978. Visual discrimination of textures with identical third-order statistics. Biol. Cybernetics, 31:137–140.

    Google Scholar 

  • Kersten, D. 1987. Predictability and redundancy of natural images. J. Opt. Soc. Am. A, 4(12):2395–2400.

    Google Scholar 

  • Knutsson, H. and Granlund, G.H. 1983. Texture analysis using twodimensional quadrature filters. In Workshop on Computer Architecture for Pattern Analysis and Image Database Management, IEEE Computer Society, pp. 206–213.

  • Malik, J. and Perona, J. 1990. Preattentive texture discrimination with early vision mechanisms. J. Opt. Soc. Am. A, 7:923–932.

    Google Scholar 

  • Mallat, S.G. 1989. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Pat. Anal. Mach. Intell., 11:674–693.

    Google Scholar 

  • Manduchi, R. and Portilla, J. 1999. Independent component analysis of textures. In Proc. Int'l Conference on Computer Vision, Corfu.

  • Olshausen, B.A. and Field, D.J. 1996. Natural image statistics and efficient coding. Network: Computation in Neural Systems, 7:333–339.

    Google Scholar 

  • Perona, P. and Malik, J. 1990. Detecting and localizing edges composed of steps, peaks and roofs. In Proc. 3rd Intl. Conf. Computer Vision, Osaka, Japan.

  • Popat, K. and Picard, R.W. 1993. Novel cluster-based probability model for texture synthesis, classification, and compression. In Proc. SPIE Vis Comm., Cambridge, MA.

  • Popat, K. and Picard, R.W. 1997. Cluster-based probability model and its application to image and texture processing. IEEE Trans. Im. Proc., 6(2):268–284.

    Google Scholar 

  • Porat, M. and Zeevi, Y.Y. 1989. Localized texture processing in vision: Analysis and synthesis in Gaborian space. IEEE Trans. Biomedical Eng., 36(1):115–129.

    Google Scholar 

  • Portilla, J., Navarro, R., Nestares, O., and Tabernero, A. 1996. Texture synthesis-by-analysis based on a multiscale early-vision model. Optical Engineering, 35(8):2403–2417.

    Google Scholar 

  • Portilla, J. and Simoncelli, E. 1999. Texture modeling and synthesis using joint statistics of complex wavelet coefficients. In IEEE Workshop on Statistical and Computational Theories of Vision, Fort Collins, CO. Available at http://www.cis.ohiostate.edu/~szhu/SCTV99.html.

  • Portilla, J. and Simoncelli, E. 2000. Image denoising via adjustment ofwavelet coefficient magnitude correlation. In Seventh IEEE Int'l Conf. on Image Proc., Vancouver, September 10– 13. IEEE Computer Society.

  • Pratt, W.K., Faugeras, O.D., and Gagolowicz, A. 1978. Visual discrimination of stochastic texture fields. IEEE Trans. on Systems Man and Cybernetics, 8:796–804.

    Google Scholar 

  • Reed, T.R. and Wechsler, H. 1990. Segmentation of textured images and Gestalt organization using spatial/spatial-frequency representations. IEEE Pat. Anal. Mach. Intell., 12(1):1–12.

    Google Scholar 

  • Ruderman, D.L. and Bialek, W. 1994. Statistics of natural images: Scaling in the woods. Phys. Rev. Letters, 73(6):814–817.

    Google Scholar 

  • Simoncelli, E.P. 1997. Statistical models for images: Compression, restoration and synthesis. In 31st Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, November 1997. IEEE Computer Society, pp. 673–678.

  • Simoncelli, E.P. and Freeman, W.T. 1995. The steerable pyramid: A flexible architecture for multi-scale derivative computation. In Second Int'l Conf. on Image Proc., Washington, DC, October 1995. Vol. III, IEEE Sig. Proc. Society, pp. 444–447.

    Google Scholar 

  • Simoncelli, E.P., Freeman, W.T., Adelson, E.H., and Heeger, D.J. 1992. Shiftable multi-scale transforms. IEEE Trans Information Theory, 38(2):587–607. Special Issue on Wavelets.

    Google Scholar 

  • Simoncelli, E. and Portilla, J. 1998. Texture characterization via joint statistics of wavelet coefficient magnitudes. In Fifth IEEE Int'l Conf. on Image Proc., Chicago, October 4– 7, Vol. I. IEEE Computer Society.

  • Tabernero, A., Portilla, J., and Navarro, R. 1999. Duality of logpolar image representations in the space and the spatial-frequency domains. IEEE Trans. on Signal Processing, 47(9):2469–2479.

    Google Scholar 

  • Turner, M.R. 1986. Texture discrimination by Gabor functions. Biol. Cybern., 55:71–82.

    Google Scholar 

  • Victor, J.D. 1994. Images, statistics and textures: Implications of triple correlation uniqueness for texture statistics and the Julesz conjecture: Comment. J. Opt. Soc. Am. A, 11(5):1680–1684.

    Google Scholar 

  • VisTex: An online collection of visual textures. MIT Media Laboratory, 1995. Available from http://www-white.media.mit.edu/vismod/imagery/VisionTexture/vistex.html.

  • Wainwright, M.J. and Simoncelli, E.P. 2000. Scale mixtures of Gaussians and the statistics of natural images. In Adv. Neural Information Processing Systems, Vol. 12, S.A. Solla, T.K. Leen, and K.-R. Müller (Eds.). MIT Press: Cambridge, MA, pp. 855–861. Presented at Neural Information Processing Systems, Dec. 1999.

    Google Scholar 

  • Watson, A.B. 1987. Efficiency of a model human image code. J. Opt. Soc. Am. A, 12:2401–2417.

    Google Scholar 

  • Yellott, J.I. 1993. Images, statistics and textures: Implications of triple correlation uniqueness for texture statistics and the Julesz conjecture. J. Opt. Soc. Am. A, 10(5):777–793.

    Google Scholar 

  • Youla, D.C. 1978. Generalized image restoration by the method of alternating orthogonal projections. IEEE Trans. Circuits and Systems, 25:694–702.

    Google Scholar 

  • Youla, D.C. and Webb, H. 1982. Image restoration by the method of convex projections. IEEE Trans. Med. Imaging, 1:81–101.

    Google Scholar 

  • Zetzsche, C., Wegmann, B., and Bart, E. 1993. Nonlinear aspects of primary vision: Entropy reduction beyond decorrelation. In Int'l Symposium, Society for Information Display, Vol. XXIV, pp. 933–936.

    Google Scholar 

  • Zhu, S.C., Liu, X., and Wu, Y.N. 1999. Exploring the Julesz ensemble by efficient Markov chain Monte Carlo. In IEEEWorkshop on Statistical and Computational Theories of Vision, Fort Collins, CO. Available at http://www.cls.ohio-state.edu/~szhu/SCTV99.html.

  • Zhu, S., Wu, Y.N., and Mumford, D. 1996. Filters, random fields and maximum entropy (FRAME)—Towards the unified theory for texture modeling. In IEEE Conf. Computer Vision and Pattern Recognition, 693–696.

  • Zhu, S.C., Wu, Y.N., and Mumford, D. 1997. Minimax entropy principle and its application to texture modeling. In Neural Computation, Vol. 9, pp. 1627–1660.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Portilla, J., Simoncelli, E.P. A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients. International Journal of Computer Vision 40, 49–70 (2000). https://doi.org/10.1023/A:1026553619983

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026553619983

Navigation