Skip to main content
Log in

Multi-scale computational method for elastic bodies with global and local heterogeneity

  • Published:
Journal of Computer-Aided Materials Design

Abstract

A multi-scale computational method using the homogenization theory and the finite element mesh superposition technique is presented for the stress analysis of composite materials and structures from both micro- and macroscopic standpoints. The proposed method is based on the continuum mechanics, and the micro–macro coupling effects are considered for a variety of composites with very complex microstructures. To bridge the gap of the length scale between the microscale and the macroscale, the homogenized material model is basically used. The classical homogenized model can be applied to the case that the microstructures are periodically arrayed in the structure and that the macroscopic strain field is uniform within the microscopic unit cell domain. When these two conditions are satisfied, the homogenization theory provides the most reliable homogenized properties rigorously to the continuum mechanics. This theory can also calculate the microscopic stresses as well as the macroscopic stresses, which is the most attractive advantage of this theory over other homogenizing techniques such as the rule of mixture. The most notable feature of this paper is to utilize the finite element mesh superposition technique along with the homogenization theory in order to analyze cases where non-periodic local heterogeneity exists and the macroscopic field is non-uniform. The accuracy of the analysis using the finite element mesh superposition technique is verified through a simple example. Then, two numerical examples of knitted fabric composite materials and particulate reinforced composite material are shown. In the latter example, a shell-solid connection is also adopted for the cost-effective multi-scale modeling and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eshelby, J.D., Proc. Royal Soc. Ser. A, 241 (1957) 376.

    Google Scholar 

  2. Hatta, H. and Taya, M., Trans. ASME, J. Eng. Mater. Tech., 109 (1987) 59.

    Article  Google Scholar 

  3. Huysmans, G., Verpoest, I. and Houtte, P.V., Acta Mater., 46-9 (1998) 3003.

    Article  Google Scholar 

  4. Sanchez-Palencia, E., Non-homogeneous Media and Vibration Theory, Springer, Berlin, 1980.

    Google Scholar 

  5. Lions, J.L., Some Methods in the Mathematical Analysis of Systems and Their Control, Science Press, Beijing, 1981.

    Google Scholar 

  6. Bakhvalov, N. and Panasenko, G., Homogenization: Averaging Processes in Periodic Media, Kluwer, Dordrecht, 1984.

    Google Scholar 

  7. Babuska, I., In Glowinski, R. and Lions, J.L. (Eds.) Lecture Note in Economics and Mathematical Systems 134, Springer-Verlag, Berlin, 1976, pp. 137-153.

    Google Scholar 

  8. Cioranescu, D. and Paulin, J.S.J., J. Math. Anal. Appl., 71-2 (1979) 590.

    Article  Google Scholar 

  9. Francfort, G.A., SIAM J. Math. Anal., 14-4 (1983) 696.

    Article  Google Scholar 

  10. Guedes, J.M. and Kikuchi, N., Comput. Methods Appl. Mech. Eng., 83 (1990) 143.

    Article  Google Scholar 

  11. Jansson, S., Int. J. Solids Struct., 29-17 (1992) 2181.

    Article  Google Scholar 

  12. Ghosh, S., Lee, K. and Moorthy, S., Comput. Methods Appl. Mech. Eng., 132 (1996) 63.

    Article  Google Scholar 

  13. Aravas, N., Cheng, C. and Castened, P.P., Int. J. Solids Struct., 32-17 (1995) 2219.

    Article  Google Scholar 

  14. Fish, J. and Shek, K., Comput. Methods Appl. Mech. Eng., 172 (1999) 145.

    Article  Google Scholar 

  15. Fish, J., Yu, Q. and Shek, K., Int. J. Numer. Methods Eng., 45 (1999) 1657.

    Article  Google Scholar 

  16. Takano, N., Uetsuji, Y., Kashiwagi, Y. and Zako, M., Modelling Simul. Mater. Sci. Eng., 7 (1999) 207.

    Article  Google Scholar 

  17. Takano, N., Zako, M. and Ohnishi, Y., Mater. Sci. Res. Int., 2-2 (1996) 81.

    Google Scholar 

  18. Terada, K., Ito, T. and Kikuchi, N., Comput. Methods Appl. Mech. Eng., 153 (1998) 233.

    Article  Google Scholar 

  19. Takano, N., Ohnishi, Y., Zako, M. and Nishiyabu, K., Int. Solids Struct., 37 (2000) 6517.

    Article  Google Scholar 

  20. Fish, J., Shek, K., Pandheeradi, M. and Shephard, M.S., Comput. Methods Appl. Mech. Eng., 148 (1997) 53.

    Article  Google Scholar 

  21. Lee, K., Moorthy, S. and Ghosh, S., Comput. Methods Appl. Mech. Eng., 172 (1999) 175.

    Article  Google Scholar 

  22. Terada, K. and Kikuchi, N., Trans. Jpn. Soc. Mech. Eng., 64-617 (1998) 162 (in Japanese).

    Google Scholar 

  23. Fish, J. and Belsky, V., Comput. Methods Appl. Mech. Eng., 126 (1995) 1.

    Article  Google Scholar 

  24. Fish, J. and Belsky, V., Comput. Methods Appl. Mech. Eng., 126 (1995) 17.

    Article  Google Scholar 

  25. Hollister, S.J. and Kikuchi, N., Comput. Mech., 10 (1992) 73.

    Article  Google Scholar 

  26. Pecullan, S., Gibiansky, L.V. and Torquato, S., J. Mech. Phys. Solids, 47 (1999) 1509.

    Article  Google Scholar 

  27. Kikuchi, N., Comput. Methods Appl. Mech. Eng., 55 (1986) 129.

    Article  Google Scholar 

  28. Kikuchi, N., Chung, K.Y., Torigaki, T. and Taylor, J.E., Comput. Methods Appl. Mech. Eng., 57 (1986) 67.

    Article  Google Scholar 

  29. Belytschko, T., Fish, J. and Bayliss, A., Comput. Methods Appl. Mech. Eng., 81 (1990) 71.

    Article  Google Scholar 

  30. Fish, J., Markolefas, S., Guttal, R. and Nayak, P., Appl. Numer. Math., 14 (1994) 135.

    Article  Google Scholar 

  31. Fish, J. and Guttal, R., Int. J. Numer. Methods Eng., 39 (1996) 3641.

    Article  Google Scholar 

  32. Rashid, M.M., Comput. Methods Appl. Mech. Eng., 154 (1998) 133.

    Article  Google Scholar 

  33. Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1982.

    Google Scholar 

  34. Surana, K.S., Int. J. Numer. Methods Eng., 15 (1980) 991.

    Article  Google Scholar 

  35. Kim, J., Varadan, V.V. and Varadan, V.K., Int. J. Numer. Methods Eng., 40 (1997) 817.

    Article  Google Scholar 

  36. Hollister, S.J. and Kikuchi, N., Biotechnol. Bioeng. 43-7 (1994) 586.

    Article  Google Scholar 

  37. Takano, N. and Zako, M., Trans. Jpn. Soc. Mech. Eng., 61-583 (1995) 589 (in Japanese).

    Google Scholar 

  38. Terada, K., Miura, T. and Kikuchi, N., Comput. Mech., 20 (1997) 331.

    Article  Google Scholar 

  39. Bigourdan, B., Chauchot, P., Hassim, A. and Lene, F., In Baptiste, D. (Ed.) Mechanics and Mechanisms of Damage in Composites and Multi-Materials, 1991, Mechanical Engineering Publications, London, pp. 203-212.

    Google Scholar 

  40. Takano, N. and Zako, M., Proc. Second Asian-Australasian Conference on Composite Materials, Korea, August, 2000 pp. 223-228.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takano, N., Zako, M. & Ishizono, M. Multi-scale computational method for elastic bodies with global and local heterogeneity. Journal of Computer-Aided Materials Design 7, 111–132 (2000). https://doi.org/10.1023/A:1026558222392

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026558222392

Navigation