Skip to main content
Log in

Gauge Supergravities for All Odd Dimensions

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently proposed supergravity theories in odddimensions whose fields are connection one-forms for theminimal supersymmetric extensions of anti-de Sittergravity are discussed. Two essential ingredients are required for this construction: (1) Thesuperalgebras, which extend the adS algebra fordifferent dimensions, and (2) the Lagrangians, which areChern-Simons (2n - 1)-forms. The first item completes the analysis of van Holten and Van Proeyen,which was valid for N = 1 only. The second ensures thatthe actions are invariant by construction under thegauge supergroup and, in particular, under localsupersymmetry. Thus, unlike standard supergravity, the localsupersymmetry algebra closes off-shell and withoutrequiring auxiliary fields. The superalgebras areconstructed for all dimensions and they fall into three families: osp (m|N) for D = 2, 3, 4, mod 8, osp(N|m) for D = 6, 7, 8, mod 8, and su(m - 2, 2|N) for D= 5 mod 4, with m = 2[D/2]. The Lagrangian isconstructed for D = 5, 7, and 11. In all cases the field content includes the vielbein(e aμ ), the spin connection(ω abμ ), N gravitini(ψ iμ ), and some extrabosonic "matter" fields which vary from onedimension to another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Troncoso and J. Zanelli, New gauge supergravity in seven and eleven dimensions, hep-th/9710180.

  2. R. Troncoso and J. Zanelli, Chern-Simons supergravities in D = 2n- 1 with off-shell local superalgebras, lecture presented at the Sixth Meeting on Quantum Mechanics of Fundamental Systems: Black Holes and the Structure of the Universe, Santiago, August 1997.

  3. M. Henneaux, Phys. Rep. 126 (1985) 1.

    Google Scholar 

  4. M. Bañados, L. J. Garay, and M. Henneaux, Phys. Rev. D 53 (1996) R593; Nucl. Phys. B 476 (1996) 611.

    Google Scholar 

  5. J. C. Taylor and V. O. Rivelles, Phys. Lett. B 104 (1981) 131; 121 (1983) 38.

    Google Scholar 

  6. E. Witten, Nucl. Phys. B 311 (1988) 46.

    Google Scholar 

  7. A. Chamseddine, Phys. Lett. B 233 (1989) 291.

    Google Scholar 

  8. A. Chamseddine, Nucl. Phys. B 346 (1990) 213.

    Google Scholar 

  9. M. Bañados, C. Teitelboim, and J. Zanelli, Phys. Rev. D 49 (1994) 975.

    Google Scholar 

  10. J. Zanelli, Phys. Rev. D 51 (1995) 490.

    Google Scholar 

  11. M. Bañados, R. Troncoso, and J. Zanelli, Phys. Rev. D 54 (1996) 2605.

    Google Scholar 

  12. J. W. van Holten and A. Van Proeyen, J. Phys. A 15 (1982) 3763.

    Google Scholar 

  13. P. van Nieuwenhuizen, Phys. Rep. 68 (1981) 1.

    Google Scholar 

  14. M. Sohnius, Phys. Rep. 28 (1985) 39.

    Google Scholar 

  15. M. Gönaydin and C. Saclioglu, Comm. Math. Phys. 87 (1982) 159.

    Google Scholar 

  16. C. Lanczos, Ann. Math. 39 (1938) 842.

    Google Scholar 

  17. D. Lovelock, J. Math. Phys. 12 (1971) 498.

    Google Scholar 

  18. B. Zumino, Phys. Rep. 137 (1986) 109.

    Google Scholar 

  19. C. Teitelboim and J. Zanelli, Class. Quant. Grav. 4 (1987) L125.

    Google Scholar 

  20. B. Zwiebach, Phys. Lett. 156B (1985) 315.

    Google Scholar 

  21. M. Henneaux, C. Teitelboim, and J. Zanelli, Gravity in higher dimensions, in SILARG V, M. Novello, ed., World Scientific, Singapore (1987); Phys. Rev. A 36 (1987) 4417.

    Google Scholar 

  22. D. G. Boulware and S. Deser, Phys. Rev. Lett. 55 (1985) 2656.

    Google Scholar 

  23. M. Bañados, C. Teitelboim, and J. Zanelli, Lovelock-Born-Infeld theory of gravity, in J. J. Giambiagi Festschrift, H. Falomir, E. Gamboa-Saraví, P. Leal, and F. Schaposnik, eds., World Scientific, Singapore (1991).

    Google Scholar 

  24. R. Debever, ed., Elie Cartan-Albert Einstein, Lettres sur le Parallélisme Absolu, 1929–1932, Académie Royal de Belgique, and Princeton University Press (1979).

  25. R. Troncoso, Doctoral Thesis, Universidad de Chile (1996).

  26. A. Mardones and J. Zanelli, Class. Quant. Grav. 8 (1991) 1545.

    Google Scholar 

  27. O. Chandía and J. Zanelli, Torsional topological in-variants (and their importance for real life), hep-th/9708138

  28. E. Cremmer, B. Julia, and J. Scherk, Phys. Lett. 76B (1978) 409.

    Google Scholar 

  29. W. Nahm, Nucl. Phys. B 135 (1978) 149; J. Strathdee, Int. J. Mod. Phys. A 2 (1987) 273.

    Google Scholar 

  30. J. A. de Azcárraga, J. P. Gauntlet, J. M. Izquierdo, and P. K. Townsend, Phys. Rev. Lett. 63 (1989) 2443.

    Google Scholar 

  31. P. K. Townsend, p-Brane democracy, hep-th/9507048

  32. H. Nishino and S. J. Gates, Phys. Lett. B 388 (1996) 504.

    Google Scholar 

  33. P. K. Townsend and P. van Nieuwenhuizen, Phys. Lett. 125B (1983) 41.

    Google Scholar 

  34. A. Salam and E. Sezgin, Phys. Lett. 126B (1983) 295.

    Google Scholar 

  35. K. Bautier, S. Deser, M. Henneaux, and D. Seminara, Phys. Lett. B 406 (1997) 49.

    Google Scholar 

  36. S. Deser, Uniqueness of D = 11 supergravity, Lecture presented at the Meeting on Black Holes and Structure of the Universe, Santiago, August 1997.

  37. H. Nishino, Alternative formulation for duality-symmet ric eleven-dimension al supergravity coupled to super M-5 Brane, hep-th/9802009.

  38. I. Bandos, N. Berkovits, and D. Sorokin, Duality symmetric eleven-D supergravity and its coupling to M-branes, hep-th/9711055.

  39. S. Aminneborg, I. Bengtsson, S. Holst, and P. Peldan, Class. Quant. Grav. 13 (1996) 2707; M. Bañados, Phys. Rev. D 57 (1998) 1068; R. B. Mann, Topological black holes: Outside looking in, gr-qc/9709039.

    Google Scholar 

  40. R. Aros, R. Olea, R. Troncoso, and J. Zanelli, Constant curvature black branes, in preparation.

  41. P. S. Howe, J. M. Izquierdo, G. Papadopoulos, and P. K. Townsend, Nucl. Phys. B 467 (1996) 183.

    Google Scholar 

  42. R. Troncoso and J. Zanelli, Degenerate dynamical systems, in preparation.

  43. P. Horava, M-Theory as a holographic field theory, hep-th/9712130.

  44. M. Gönaydin and D. Minic, Singletons, doubletons and M-theory, hep-th/9802047; M. Gönaydin, Unitary supermultiplet s of OSP(1/32, R) and M Theory, hep-th/9803133.

  45. J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, World-sheet formulation of M-theory, hep-th/9804084.

  46. M. Nakahara, Geometry, Topology and Physics, Adam Hilger, New York (1990).

    Google Scholar 

  47. T. Eguchi, P. B. Gilkey, and A. J. Hanson, Phys. Rep. 66 (1980) 213.

    Google Scholar 

  48. P. Freund, Introduction to Supersymmetry, Cambridge University Press, Cambridge (1989).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Troncoso, R., Zanelli, J. Gauge Supergravities for All Odd Dimensions. International Journal of Theoretical Physics 38, 1181–1206 (1999). https://doi.org/10.1023/A:1026614631617

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026614631617

Keywords

Navigation