Skip to main content
Log in

Noncommutative Unification of General Relativity and Quantum Mechanics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a mathematical structure, based on anoncommutative geometry, which combines essentialaspects of general relativity with those of quantummechanics, and leads to correct “limitingcases” of both these physical theories. Thenoncommutative geometry of the fundamental level isnonlocal with no space and no time in the usual sense,which emerge only in the transition process to thecommutative case. It is shown that because of the originalnonlocality, quantum gravitational observables should belooked for among correlations of distant phenomenarather than among local effects. We compute the Einstein–Podolsky–Rosen effect; itcan be regarded as a remnant or a “shadow”of the noncommutative regime of the fundamental level.A toy model is computed predicting the value of the“cosmological constant” (in the quantum sector) which vanishes whengoing to the standard spacetime physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Chamseddine, A. H., and Connes, A. (1996a). The spectral action principle, Preprint hepth/ 9606001.

  • Chamseddine, A. H., and Connes, A. (1996b). A universal action formula, Preprint hep-th/ 9606056 (1996).

  • Chamseddine, A. H., Felder, G., and Fröhlich, J. (1993). Commun. Math. Phys. 155, 205–217.

    Google Scholar 

  • Choquet-Bruchat, Y., DeWitt-Morette, C., and Dillard-Bleick, M. (1982). Analysis, Manifolds and Physics, rev. ed. North-Holland, Amsterdam.

    Google Scholar 

  • Connes, A. (1979). Sur la theorie non commutative de l' intgration, in: Algèbres d'Operateurs, Lecture Notes in Mathematics, No. 725, Springer, Berlin, pp. 19–143.

    Google Scholar 

  • Connes, A. (1994). Noncommutativ e Geometry, Academic Press, New York.

    Google Scholar 

  • Connes, A. (1996). Commun. Math. Phys. 182, 155–176.

    Google Scholar 

  • Connes, A., and Lott, J. (1990). Nucl. Phys. Suppl., B, 18, 29–47.

    Google Scholar 

  • Connes, A., and Rovelli, C. R., (1994). Class. Quant. Grav. 11, 2899–2917.

    Google Scholar 

  • Demaret, J., Heller, M., and Lambert, D. (1997). Found. Sci. 2, 137–176.

    Google Scholar 

  • Dubois-Violette, M. (1988). C. R. Acad. Sci. Paris 307, 403–408.

    Google Scholar 

  • Dubois-Violette, M. (1995). Some aspects of noncommutative differential geometry, preprint q-alg/9511027.

  • Dubois-Violette, M., and Michor, P. W. (1994). C. R. Acad. Sci. Paris 319, (Ser. I), 927–931.

    Google Scholar 

  • Dubois-Violette, M., Kerner, R., and Madore, J. (1989a). Phys. Lett. B 217, 485.

    Google Scholar 

  • Dubois-Violette, M., Kerner, R., and Madore, J. (1989b). Class. Quant. Grav. 6, 1709–1724.

    Google Scholar 

  • Dubois-Violette, M., Kerner, R., and Madore, J. (1990). J. Math. Phys. 31, 316–322.

    Google Scholar 

  • Fell, J. M. G. (1961). Acta Math. 106, 233–280.

    Google Scholar 

  • Hajac, P. M. (1996). J. Math. Phys. 37, 4549–4556.

    Google Scholar 

  • Heller, M., and Sasin, W. (1995). J. Math. Phys. 36, 3644–3662.

    Google Scholar 

  • Heller, M., and Sasin, W. (1996). J. Math. Phys. 37, 5665–5671.

    Google Scholar 

  • Heller, M., and Sasin, W. (1997). Banach Center Publications 41, 153–162.

    Google Scholar 

  • Heller, M., and Sasin, W. (1998). Einstein-Podolsky-Rosen experiment from noncommutative quantum gravity, in: Particles, Fields, and Gravitation, ed. by J. Rembieliński, American Institute of Physics, Woodbury-New York, 234–241.

    Google Scholar 

  • Heller, M., Sasin, W., and Lambert, D. (1997). J. Math. Phys. 38, 5840–5853.

    Google Scholar 

  • Koszul, J. L. (1960). Fibre Bundles and Differential Geometry, Tata Institute of Fundamental Research, Bombay.

    Google Scholar 

  • Landi, G. (1997). An Introduction to Noncommutative Spaces and Their Geometry, Springer, Berlin.

    Google Scholar 

  • J. Madore, (1995). An Introduction to Noncommutativ e Differential Geometry and Its Physical Applications, Cambridge University Press, Cambridge.

    Google Scholar 

  • Madore, J. (1997). Gravity on fuzzy space-time, ESI Preprint 478.

  • Madore, J., and Mourad, J. (1996). J. Math. Phys. 39, 423–442.

    Google Scholar 

  • Masson, T. (1996). Géometrie non commutative et applications aÁ la théorie des champs, Thesis, preprint ESI 296, Vienna.

  • Palais, R. S. (1981). Real Algebraic Differential Topology, Publish or Perish, Wilmington, Delaware.

    Google Scholar 

  • Renault, J. (1980). A Groupoid Approach to C* Algebras, Lecture Notes in Mathematics, No 793, Springer, Berlin.

    Google Scholar 

  • Rovelli, C. (1990). Phys. Rev. D 42, 2638–2646.

    Google Scholar 

  • Rovelli, C. (1991). Phys. Rev. D 43, 442–456.

    Google Scholar 

  • Sasin, W., and Heller, M. (1995). Acta Cosmol. (Cracow) 21(2), 235–245.

    Google Scholar 

  • Serre, P. (1978). Représentations linéaires des groupes finis, Hermann, Paris.

    Google Scholar 

  • Sitarz, A. (1994). Classical and Quantum Gravity 11, 2127–2134.

    Google Scholar 

  • Thirring, W. (1979). Lehrbuch der Mathematischen Physik, Vol. 3, Springer, Vienna.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heller, M., Sasin, W. Noncommutative Unification of General Relativity and Quantum Mechanics. International Journal of Theoretical Physics 38, 1619–1642 (1999). https://doi.org/10.1023/A:1026617913754

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026617913754

Keywords

Navigation