Skip to main content
Log in

Quantum Automata: An Overview

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum state machines are introduced.Amplitudes of computational paths, computational bases,superposition states, and evolution operators arediscussed. The main part of the paper develops a theoryof quantum automata and their slightly moregeneral versions, q-automata. Quantum languages andη-quantum languages, 0 ≤ η < 1, arestudied. A method is given for reducing the size of thestate space. Functions that can be realized as probabilitymaps for q-automata are characterized. Quantum gates arediscussed. A quantum pumping lemma is employed to showthat there are regular languages that are not η-quantum, 0 ≤ η < 1. The papercloses with a list of open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Adelman, J. DeMarrais, and M. Huang, Quantum computability, SIAM J. Comput. 26, 1524–1540 (1997).

    Google Scholar 

  2. A. Barenco, C. Bennett, R. Cleve, D. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, Elementary gates for quantum computation, Phys. Rev. A 52, 3457–3467 (1995).

    Google Scholar 

  3. P. Benioff, Quantum Hamiltonian models of Turing machines, Int. J. Stat. Phys. 29, 515–546 (1982).

    Google Scholar 

  4. P. Benioff, Quantum mechanical Hamiltonian models of Turing machines that dissipate no energy, Phys. Rev. Lett. 48, 1581–1585 (1982).

    Google Scholar 

  5. C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of quantum computing, SIAM J. Comput. 26, 1510–1523 (1997).

    Google Scholar 

  6. E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM J. Comput. 26, 1411–1473 (1997).

    Google Scholar 

  7. A. Berthiawme and G. Brassard, Oracle quantum computing, J. Mod. Optics 41, 2521–2535 (1994).

    Google Scholar 

  8. J. Chuang, R. LaFlamme, P. Shor, and W. Zurek, Quantum computers, factoring and decoherence, Science 1995 (December 8), 1633–1635 (1995).

  9. D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. R. Soc. Lond. A 400, 97–117 (1985).

    Google Scholar 

  10. D. Deutsch, Quantum computational networks, Proc. R. Soc. Lond. A 425, 73–90 (1989).

    Google Scholar 

  11. D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Proc. R. Soc. Lond. A 439, 553–558 (1992).

    Google Scholar 

  12. D. DiVincenzo, Two-bit gates are universal for quantum computation, Phys. Rev. A 51, 1015–1022 (1995).

    Google Scholar 

  13. R. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21, 467–488 (1982).

    Google Scholar 

  14. R. Feynman, Quantum mechanical computers, Found. Phys. 16, 507–531 (1986).

    Google Scholar 

  15. A. Gleason, Measures on closed subspaces of a Hilbert space, J. Rat. Mech. Anal. 6, 885–893 (1957).

    Google Scholar 

  16. A. Kondacs and J. Watrous, On the power of quantum finite state automata, in Proceedings 38th Symposium on Foundations of Computer Science (1997).

  17. C. Moore and J. Crutchfield, Quantum automata and quantum grammars, Theor. Comp. Sci. (to appear).

  18. G. Palma, K. Suominen, and A. Ekert, Quantum computers and dissipation, Proc. R. Soc. Lond. A 452, 567–584 (1996).

    Google Scholar 

  19. A. Paz, Introduction to Probabilistic Automata, Academic Press, New York (1971).

    Google Scholar 

  20. P. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52, 2493–2496 (1995).

    Google Scholar 

  21. P. Shor, Polynomial-t ime algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26, 1484–1509 (1997).

    Google Scholar 

  22. D. Simon, On the power of quantum computation, SIAM J. Comput. 26, 1474–1483 (1997).

    Google Scholar 

  23. A. Steane, Active stabilization, quantum computation, and quantum state synthesis, Phys. Rev. Lett. 78, 2252–2255 (1997).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudder, S. Quantum Automata: An Overview. International Journal of Theoretical Physics 38, 2261–2282 (1999). https://doi.org/10.1023/A:1026663432352

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026663432352

Keywords

Navigation