Skip to main content
Log in

The Exceptional Jordan Eigenvalue Problem

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We discuss the eigenvalue problem for 3 ×3 octonionic Hermitian matrices which is relevant to theJordan formulation of quantum mechanics. In contrast tothe eigenvalue problems considered in our previous work, all eigenvalues are real and solve theusual characteristic equation. We give an elementaryconstruction of the corresponding eigenmatrices, and wefurther speculate on a possible application to particle physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Dray and C.A. Manogue, The octonionic eigenvalue problem, Adv. Appl. Clifford Algebras 8, 341-364 (1998).

    Google Scholar 

  2. T. Dray and C.A. Manogue, Finding octonionic eigenvectors using Mathematica, Comput. Phys. Comm. 115, 536-547 (1998).

    Google Scholar 

  3. T. Dray, J. Janesky, and C.A. Manogue, Octonionic Hermitian matrices with non-real eigenvalues, in preparation.

  4. C.A. Manogue and T. Dray, Dimensional reduction, Mod. Phys. Lett. A 14, 93-97 (1999).

    Google Scholar 

  5. C.A. Manogue and T. Dray, Quaternionic spin, in Clifford Algebras and Mathematical Physics, R. Abłamowicz and B. Fauser, eds., to appear; hep-th/9910010.

  6. O. V. Ogievetskii, Kharakteristichesko e Uravnenie dlya Matrits 3 × 3 nad Oktavami, Uspekhi Mat. Nauk 36, 197-198 (1981); translated in: O. V. Ogievetskii, The Characteristic Equation for 3 × 3 Matrices over Octaves, Russian Math. Surveys 36, 189-190 (1981).

    Google Scholar 

  7. Susumu Okubo, Eigenvalue Problem for Symmetric 3 × 3 Octonionic Matrix, University of Rochester preprint, 1999.

  8. P. Jordan, Über die Multiplikation quantenmechanisch er Größen, Z. Phys. 80, 285-291 (1933).

    Google Scholar 

  9. P. Jordan, J. von Neumann, and E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. Math. 35, 29-64 (1934).

    Google Scholar 

  10. H. Freudenthal, Oktaven, Ausnahmegruppen, und Oktavengeometrie, Mathematisch Instituut der Rijksuniversiteit te Utrecht (1951); new revised edition, 1960; reprinted, Geom. Dedicata 19, 1-63 (1985).

    Google Scholar 

  11. H. Freudenthal, Zur Ebenen Oktavengeometrie, Proc. Kon. Ned. Akad. Wet. A 56, 195-200 (1953).

    Google Scholar 

  12. H. Freudenthal, Lie groups in the foundations of geometry, Adv. Math. 1, 145-190 (1964).

    Google Scholar 

  13. N. Jacobson, Structure and Representations of Jordan Algebras (American Mathematical Society, Providence, Rhode Island, 1968).

    Google Scholar 

  14. R.D. Schafer, An Introduction to Nonassociative Algebras (Academic Press, New York, 1966, reprint, Dover, Mineola, New York, 1995).

    Google Scholar 

  15. F. Reese Harvey, Spinors and Calibrations (Academic Press, Boston, 1990).

    Google Scholar 

  16. B. Rosenfeld, Geometry of Lie Groups (Kluwer, Dordrecht, 1997).

    Google Scholar 

  17. C. Chevalley and R.D. Schafer, The exceptional simple Lie algebras F 4 and E 6, Proc. Nat. Acad. Sci. USA 36, 137-141 (1950).

    Google Scholar 

  18. A. Adrian Albert, On a certain algebra of quantum mechanics, Ann. Math. 35, 65-73 (1934).

    Google Scholar 

  19. F. Gürsey and C.-H. Tze, On the Role of Division, Jordan, and Related Algebras in Particle Physics (World Scientific, Singapore, 1996).

    Google Scholar 

  20. S. Okubo, Introduction to Octonion and Other Non-Associative Algebras in Physics (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  21. J. Schray, The general classical solution of the superparticle, Class. Quant. Grav. 13, 271-38 (1996).

    Google Scholar 

  22. J. Schray, Octonions and supersymmetry, Ph.D. thesis, Department of Physics, Oregon State University (1994).

  23. C.A. Manogue and J. Schray, Finite Lorentz transformations, automorphisms, and division algebras, J. Math. Phys. 34 3746-3767 (1993).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dray, T., Manogue, C.A. The Exceptional Jordan Eigenvalue Problem. International Journal of Theoretical Physics 38, 2901–2916 (1999). https://doi.org/10.1023/A:1026699830361

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026699830361

Keywords

Navigation