Skip to main content
Log in

About the Realistic Porosity of Porous Glasses

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Nitrogen adsorption, mercury intrusion, scanning electron microscopy and small-angle X-ray scattering have been used to determine the texture properties of a selected mesoporous glass. The glass has been prepared by a combined acid and alkaline leaching treatment of a phase separated sodium-borosilicate initial glass. Residues of silica gel, remaining in the pores of the investigated glass after the treatment with alkaline solution, lead to differences in the results of the standard characterization techniques nitrogen adsorption and mercury intrusion.

In order to explain these differences, small-angle scattering experiments in combination with scanning electron microscopy have been performed.

Here, a well-defined range order L ≈ 60 nm has been selected and a 50% porosity results. The behaviour of the second derivative of the small-angle scattering correlation function has been checked by the use of the linear simulation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Janowski and W. Heyer, Poröse Gläser-Herstellung Eigenschaften und Anwendung (Deutscher Verlag für Grundstoffindustrie, Leipzig, 1982).

    Google Scholar 

  2. W. Heyer, F. Janowski, and F. Wolf, Z. Chem. 17, 212 (1977).

    Google Scholar 

  3. S.A. Gevelyuk, I.K. Doycho, D.E. Lishchuk, L.P. Prokopovich, E.D. Safronsky, E. Rysiakiewicz-Pasek, and Y.O. Roizin, Linear extension of porous glasses with modified internal surface in humid environment, Optica Applicata 30, 605 (2000).

    Google Scholar 

  4. W. Gille, O. Kabisch, S. Reichel, D. Enke, D. Fürst, and F. Janowski, Characterization of porous glasses via small-angle scattering and other methoids, Microporous and Mesoporous Materials 54, 145 (2002).

    Google Scholar 

  5. F. Janowski, D. Enke, in Handbook of Porous Solids, edited by F. Schüth, K.S.W. Sing, and J. Weitkamp, (Wiley-VCH, Weinheim, 2002) Chapter “Porous Glasses,” vol. 3, p. 1432.

    Google Scholar 

  6. K. Murata, K. Kaneko, F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, Pore structure of single-wall carbon nanohorn aggregates, Chemical Physics Letters 332, 14 (2000).

    Google Scholar 

  7. L.D. Gelb and K.E. Gubbins, Characterization of porous glasses: Simulation models, adsorption isotherms, and the Brunauer-Emmet-Teller analysis method, Langmuir 14, 2097 (1998).

    Google Scholar 

  8. L.A. Feigin and D.I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Plenum, New York, 1987).

    Google Scholar 

  9. G. Porod, in Small-Angle X-ray Scattering, Section I. The Principles of Diffraction, General Theory, edited by O. Glatter and O. Kratky (Academic Press, London, 1982), p. 34.

    Google Scholar 

  10. W. Gille, D. Enke, and F. Janowski, Pore size distribution and chord length distribution of porous VYCOR glass (PVG), J. Porous Mat. 9, 221 (2002).

    Google Scholar 

  11. M. Born, Optik-Ein Lehrbuch der elektromagnetischen Lichttheorie, 2nd reprint of 3rd edition (Springer, 1985), (Section 44), p. 147.

  12. A. Rosiwal and Verh. K.K. Geol. Reichsanst. 5/6, 143 (1898).

    Google Scholar 

  13. D. Tchoubar, Diffusion centrale des Rayons X par les Systemes Poreux, Thesis, Paris 1967 (in French language).

  14. M.J. Méring and D. Tchoubar-Vallat, C.R. Acad. Sc. Paris 261, 3096 (1965).

    Google Scholar 

  15. D. Tchoubar-Vallat and M.J. Méring, C.R. Acad. Sc. Paris 261, 3361 (1965).

    Google Scholar 

  16. D. Enke, K. Otto, F. Janowski, W. Heyer, W. Schwieger, and W. Gille, Two-phase porous silica: Mesopores inside controlled pore glasses, Journal of Materials Science 36, 2349 (2001).

    Google Scholar 

  17. G. Damaschun and H.-V. Pürschel, Röntgenkleinwinkelstreuung von isotropen Proben ohne Fernordnung. Allgemeine Theorie, Acta Cryst. A 27, 193 (1971).

    Google Scholar 

  18. A. Emmerling and J. Fricke, Small-angle scattering and structure of aerogels, J. Noncryst. Solids 145, 113 (1992).

    Google Scholar 

  19. W. Gille, D. Enke, and F. Janowski, Stereological macropore analysis of a controlled pore glass by use of small-angle scattering, J. Porous Mat. 8, 179 (2001).

    Google Scholar 

  20. W. Gille, Linear simulation models for real space interpretation of small-angle scattering experiments, Waves in Random Media 12, 85 (2001).

    Google Scholar 

  21. S.P. Zhdanov, The Structure of Glass, (Consultants Bureau, New York, 1958), p. 125.

    Google Scholar 

  22. E.A. Porai-Koshits, The Structure of Glass (Consultants Bureau, New York, 1958), p. 112.

    Google Scholar 

  23. H. Tanaka, T. Yazawa, K. Eguchi, H. Nagasawa, N. Matsuda, and T. Einishi, Journal of Non-Crystalline Solids 65, 301 (1984).

    Google Scholar 

  24. Y. Ryabov, A. Gutina, V. Arkhipov, and Y. Feldman, J. Phys. Chem. B 105, 1845 (2001).

    Google Scholar 

  25. B. Bilinski and A.L. Dawidowicz, Colloids and surfaces A: Physicochemical and engineering aspects, 118, 149 (1996).

    Google Scholar 

  26. D. Stoyan, W.S. Kendall, and F. Mecke, Stochastic Geometry and Applications (Akademie Verlag, Berlin, 1990).

    Google Scholar 

  27. S.G. Gregg and K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic Press, London, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gille, W., Enke, D., Janowski, F. et al. About the Realistic Porosity of Porous Glasses. Journal of Porous Materials 10, 179–187 (2003). https://doi.org/10.1023/A:1027438517973

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027438517973

Navigation