Skip to main content
Log in

Application of Interlaminar Tests to Marine Composites. A Literature Review

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This paper gives an overview of the characterization of the interlaminar properties of composites used for marine structures. Composites to be used in marine applications have particular requirements due to their environment, their large dimensions, mechanical loading and cost constraints. Under certain loading conditions (insert loading, impact) there is a risk of delamination as interlaminar strength of these materials is limited. This paper presents an overview of the tests available to measure delamination resistance. The parameters which influence this property, including the constituents (fibre, matrix, interface), specimen geometry, fabrication route and the resulting defects, and aging are reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

<Emphasis Type="Bold">References

  1. Smith, C. S., Design of Marine Structures in Composite Materials, Elsevier Applied Science, London, 1990.

    Google Scholar 

  2. Heinz, D., Ritcher, B. and Weber, S., ‘Application of Advanced Materials for Ship Construction. Experience and Problems’, Materials and Corrosion <Emphasis Type="Bold">51, 2000, 40–412.

    Google Scholar 

  3. Mouritz, A. P., Gellert, E., Burchill, P. and Challis, K., ‘Review of Advanced Composite Structures for Naval Ships and Submarines’, Composite Structures <Emphasis Type="Bold">53, 2001, 2–41.

    Google Scholar 

  4. Davies, P. and Petton, D., ‘An Experimental Study of Scale Effects in Marine Composites’, Composites Part A <Emphasis Type="Bold">30, 1999, 26–275.

    Google Scholar 

  5. Hellbratt, S. E., ‘Experiences from Design and Production of the 72m CFRP Sandwich Corvette Visby’, in Proc. 6th Int. Conf. on Sandwich Structures, March 2003, CRC Press, pp. 1–24.

  6. Favre, J. P. and Vidal, G., ‘Effet de l’humidité sur la fatigue en cisaillement des composites unidirectionnels. Tentatives d'interprétation et bilan’, Comptes rendus des troisièmes journées Nationales sur les Composites. JNC 3, Paris, 2–23 sept. 1982, 6–75.

  7. Mouritz, A. P., Leong, K. M. and Herszberg, I., ‘A Review of the Effect of Stitching on the In-Plane Mechanical Properties of Fibre-Reinforced Polymer Composites’, Composites Part A <Emphasis Type="Bold">28, 1997, 97–991.

    Google Scholar 

  8. Kim, W. C. and Dharan, C. K. H., ‘Analysis of Five-Point Bending for Determination of the Interlaminar Shear Strength of Unidirectional Composite Materials’, Composite Structures <Emphasis Type="Bold">30, 1995, 24–251.

    Google Scholar 

  9. Kim, J. K. and Sham, M. L., ‘Impact and Delamination Failure of Woven-Fabric Composites’, Composites Science and Technology <Emphasis Type="Bold">60, 2000, 74–761.

    Google Scholar 

  10. Asp, L. E., ‘The Effects of Moisture and Temperature on the Interlaminar Delamination Toughness of a Carbon/Epoxy Composite’, Composites Science and Technology <Emphasis Type="Bold">58, 1998, 96–977.

    Google Scholar 

  11. Sellars, F. H., ‘Water Impact Loads’, Marine Technology <Emphasis Type="Bold">13(1), 1976, 4–58.

    Google Scholar 

  12. Parga-Landa, B., Vlegels, S., Hernadez-Olivare, F. and Clark, S. D., ‘Analytical Simulation of Stress Wave Propagation in Composite Materials’, Composite Structures <Emphasis Type="Bold">45, 1999, 12–129.

    Google Scholar 

  13. Hildebrand, M., ‘Improving the Strength of Boat Laminates’, in Nautical Construction with Composite Materials, Ifremer, Paris –9 December 1992, Conference Proceedings no 15, pp. 21–223.

    Google Scholar 

  14. Kessler, A. and Bledzki, A., ‘Correlation between Interphase-Relevant Tests and the Impact-Damage Resistance of Glass/Epoxy Laminates with Different Fibre Surface Treatments’, Composites Science and Technology <Emphasis Type="Bold">60, 2000, 12–130.

    Google Scholar 

  15. Sjögren, B. A. and Berglund, L. A., ‘The Effects of Matrix and Interface on Damage in GRP Cross-Ply Laminates’, Composites Science and Technology <Emphasis Type="Bold">60, 2000, –21.

    Google Scholar 

  16. Parga-Landa, B., Vlegels, S., Hernadez-Olivare, F. and Clark, S. D., ‘An Analytical Study of the Effect of Slamming Pressures on the Interlaminar Behaviour of Composite Panels’, Composite Structures <Emphasis Type="Bold">46, 1999, 35–365.

    Google Scholar 

  17. Chang, F. K., Tang, J. M. and Peterson, D. G., ‘The Effect of Testing Methods on the Shear Strength Distribution in Laminated Composites’, Journal of Reinforced Plastics and Composites <Emphasis Type="Bold">6, 1987, 30–318.

    Google Scholar 

  18. Deng, S. and Ye, L., ‘Influence of Fiber-Matrix Adhesion on Mechanical Properties of Graphite/Epoxy Composites: II Interlaminar Fracture and Inplane Shear Behavior’, Journal of Reinforced Plastics and Composites <Emphasis Type="Bold">18(11), 1999, 104–1057.

    Google Scholar 

  19. Mouritz, A. P., Gallagher, J. and Goodwin, A. A., ‘Flexural Strength and Interlaminar Shear Strength of Stitched GRP Laminates Following Repeated Impact’, Composites Science and Technology <Emphasis Type="Bold">87, 1997, 50–522.

    Google Scholar 

  20. Iosipescu, N., ‘New Accurate Procedure for Single Shear Testing of Metals’, Journal of Materials <Emphasis Type="Bold">2(3), 1967, 53–566.

    Google Scholar 

  21. Roudet, F., ‘Comportement en flexion trois points avec cisaillement préponderant de composites verre/epoxyde unidirectionnels: sous chargement monotone et cyclique’, Thèse de doctorat, Université des Sciences et Technologies de Lille, France, 1998.

    Google Scholar 

  22. Pierron, F. and Vautrin, A., ‘The 10° Off-Axis Tensile Test: A Critical Approach’, Composites Science and Technology <Emphasis Type="Bold">56(4), 1996, 48–488.

    Google Scholar 

  23. Pierron, F. and Vautrin, A., ‘Measurement of the In-Plane Shear Strengths of Unidirectional Composites with the Iosipescu Test’, Composites Science and Technology <Emphasis Type="Bold">57(12), 165–1660.

  24. Hassaïni, D., ‘Etude numérique et expérimentale du comportement monotone et cyclique en cisaillement inter-et intralaminaire du composite unidirectionnel verre/epoxy’, Thèse École Centrale de Lille, France, 7 juillet 1998.

  25. Roselli, F. and Santare, M. H., ‘Comparison of the Short Beam Shear (SBS) and Interlaminar Shear Device (ISD) Tests’, Composites Part A <Emphasis Type="Bold">28, 1997, 58–594.

    Google Scholar 

  26. Williams, J. C., Yurgartis, S.W. and Moosbrugger, J. C., ‘Interlaminar Shear Fatigue Damage Evolution of 2-D Carbon-Carbon Composites’, Journal of Composite Materials <Emphasis Type="Bold">30(7), 1996, 78–799.

    Google Scholar 

  27. Hoecker, F., Friedrich, K., Blumberg, H. and Karger-Kocsis, J., ‘Effects of Fiber/Matrix Adhesion on Off-Axis Mechanical Reponse in Carbon-Fiber/Epoxy-Resin Composites’, Composites Science and Technology <Emphasis Type="Bold">54, 1995, 31–327.

    Google Scholar 

  28. Herrera-Franco, P., Wu, W. L., Madhukar, M. and Drazl, L. T., ‘Contemporary Methods for Measurement of Fiber-Matrix Interfacial Shear Strength’, 46th Annual Conference, Composite Institute, The Society of the Plastics Industry, Inc., February 1–21, 1991, Session 14B/1-6.

  29. Bagueri, M., ‘The Three-Point Bending Test, a Critical Review’, in Proceeding of the 8th Japan-US Conference on Composite Materials (Baltimore), Ed. Technomic Publ., 1998, pp. 68–692.

  30. Short, S. R., ‘Characterization of Interlaminar Shear Failure of Graphite/Epoxy Composite Materials’, Composites <Emphasis Type="Bold">26, 1995, 43–449.

    Google Scholar 

  31. Davies, P., Pomiès, F. and Carlsson, L. A., ‘Influence of Water and Accelerated Ageing on the Shear Fracture Properties of Glass/Epoxy Composite’, Applied Composite Materials <Emphasis Type="Bold">3, 1996, 7–87.

    Google Scholar 

  32. Bouette, B., Cazeneuve, C. and Oytana, C., ‘Effect of Strain Rate on Interlaminar Shear Properties of Carbon/Epoxy Composites’, Composites Science and Technology <Emphasis Type="Bold">45, 1992, 31–321.

    Google Scholar 

  33. Wisnom, M. R., Petrossian, Z. J. and Jones, M. I., ‘Interlaminar Failure of Unidirectional Glass/Epoxy Due to Combined Through Thickness Shear and Tension’, Composites Part A <Emphasis Type="Bold">27, 1996, 92–929.

    Google Scholar 

  34. Martin, R. H., ‘Delamination Failure in a Unidirectional Curved Composite LaminateL-Specimen’, in Composite Materials: Testing and Design (Tenth volume), ASTM STP 1120, 1992, pp. 36–383.

  35. Davies, P., Blackman, B. R. K. and Brunner, A. J., ‘Standard Test Methods for Delamination Resistance of Composite Materials: Current Status’, Applied Camposite Materials <Emphasis Type="Bold">5, 1998, 34–364.

    Google Scholar 

  36. Moore, D. R., Pavan, A. and Williams, J. G., Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites, ESIS Publication 28, Elsevier, 2001.

  37. Davies, P., Sims, G. D. et al., ‘Comparison of Test Configurations for Determination of Mode II Interlaminar Fracture Toughness, Results from International Collaborative Test Programme’, Plastics, Rubber & Composites <Emphasis Type="Bold">28(9), 1999, 43–437.

    Google Scholar 

  38. Lee, S. M., ‘An Edge Crack Torsion Method for Mode III Delamination Fracture Testing’, Journal of Composite Technology Research <Emphasis Type="Bold">15, 1993, 19–201.

    Google Scholar 

  39. Griffith, A. A., ‘The Phenomenon of Rupture and Flow in Solids’, Philosophical Transactions of the Royal Society of London <Emphasis Type="Bold">221a, 1920, 16–198.

    Google Scholar 

  40. Wisnom, M. R., ‘Size Effects in Tensile, Compressive and Interlaminar Failure of Unidirectional Composites’, Proceedings of ASME Aerospace Division AD-Vol. 55, 1997, 6–77.

    Google Scholar 

  41. Wisnom, M. R., ‘Size Effects in the Testing of Fibre-Composite Materials’, Composites Science and Technology <Emphasis Type="Bold">59, 1999, 193–1957.

    Google Scholar 

  42. Cui, W. and Wisnom, R., ‘Size Effects in Interlaminar Shear Failure for Different Specimen Geometries’, in 2nd International Conference on Deformation and Fracture of Composite, Institute of Materials, 1993, pp. 9/–10.

  43. Sutherland, L. S., Shenoi, R. A. and Lewis, S. M., ‘Size and Scale Effects in Composites: I. Literature Review’, Composites Science and Technology <Emphasis Type="Bold">59(2), 1999, 20–220.

    Google Scholar 

  44. Brelant, S. and Pekter, I., ‘Fabrication and Environmental Interaction of Filament - Wound Composites’, in Mechanics of Composites Materials, F. W. Wendt, H. Liebowitz and Perrone (eds), Pergamon Press, Oxford, 1970, pp. 79–812.

    Google Scholar 

  45. Tucker, R., Compston, P. and Jar, P. Y. B., ‘The Effect of Post-Cure Duration on the Mode I Interlaminar Fracture Toughness of Glass-Fibre Reinforced Vinylester’, Composites Part A <Emphasis Type="Bold">32, 2001, 12–134.

    Google Scholar 

  46. Skrifvard, M., Berglund, L. and Ericson, M., ‘Microscopy of the Morphology in Low Stryrene Emission Glass Fiber/Unsaturated Polyester Laminates’, Journal of Applied Polymer Science <Emphasis Type="Bold">71, 1999, 155–1562.

    Google Scholar 

  47. Gutierrez, J., Le Lay, F. and Hoarau, P. A., ‘A Study of the Aging of Glass Fibre-Resin Composites in a Marine Environment’, in Nautical Construction with Composite Materials, Ifremer, Paris, –9 December 1992, Conference Proceedings no15, pp. 33–346.

    Google Scholar 

  48. Spinger, G. S., Sanders, B. A. and Tung, R., ‘Environmental Effects on Glass Fiber Reinforced Polyester and Vinylester Composites’, Journal of Composite Materials <Emphasis Type="Bold">80(14), 1980, 21– 232.

    Google Scholar 

  49. Young, R. E., ‘Vinyl Ester Resins’, in Unsaturated Polyester Technology, P. K. Mallich (ed.), Marcel Dekker Inc., New York, 1997, pp. 31–420.

    Google Scholar 

  50. Compston, P. and Jar, P. Y. B., ‘The Influence of Fibre Volume Fraction on the Mode I Interlaminar Fracture Toughness of a Glass-Fibre/Vinylester Composite’, Applied Composite Materials <Emphasis Type="Bold">6, 1999, 35–368.

    Google Scholar 

  51. St John, N. A. and Brown, J. R., ‘Flexural and Interlaminar Shear Properties of Glass-Reinforced Phenolic Composites’, Composites Part A <Emphasis Type="Bold">29, 1998, 93–946.

    Google Scholar 

  52. Falconnet, D., Bourban, P. E., Pandita, S., Manson, J. A. E. and Verpoest, I., ‘Fracture Toughness of Weft-Knitted Fabric Composites’, Composites Part A <Emphasis Type="Bold">33, 2002, 57–588.

    Google Scholar 

  53. Verpoest, I., Gommers, B., Huysmans, G., Ivens, J., Luo, Y., Pandita, S. and Philips, D., ‘The Potential of Knitted Fabrics as a Reinforcement for Composites’, Proceedings ICCM-11, 1– 18 July 1997, 1-10–33.

  54. Martin, R. H., ‘Delamination Characterisation of Woven Glass/Polyester Composites’, Journal Composite Technology Research <Emphasis Type="Bold">19(1), 1997, 2–28.

    Google Scholar 

  55. Alif, N., Carlsson, L. A. and Gillespie, J., ‘Mode I, Mode II and Mixed Mode Interlaminar Fracture of Woven Fabric Carbon/Epoxy’, ASTM STP 1997, 1242: 82.

    Google Scholar 

  56. Suppakul, P. and Bandyopadhyay, S., ‘The Effect of Weave Pattern on theMode I Interlaminar Fracture Energy of E Glass/Vinylester Composites’, Composites Science and Technology <Emphasis Type="Bold">62, 2002, 70–717.

    Google Scholar 

  57. Alif, N., Carlsson, L. A. and Boogh, L., ‘The Effect of Weave Pattern and Crack Propagation Direction on Mode I Delamination Resistance of Woven Glass and Carbon Composites’, Composites Part B <Emphasis Type="Bold">29(5), 1998, 60–611.

    Google Scholar 

  58. Guess, T. R. and Reedy, E. D., ‘Comparison of Interlocked Fabric and Laminated Fabric Kevlar 49/Epoxy Composites’, Journal Composite Technology Research <Emphasis Type="Bold">1(4), 1985, 136.

    Google Scholar 

  59. Cartié, D. D. R and Partridge, I. K., ‘Delamination Behaviour of Z-Pinned Laminates’, in Proceedings ESIS Conference on Fracture of Polymers, Composites and Adhesives, ESIS Publication

  60. J. G. Williams and A. Pavan (eds), Elsevier, Oxford, 2000, pp. 2–36, Proceedings of 2nd ESIS TC4 Conference (Les Diablerets, Switzerland, 1–15 September 1999).

    Google Scholar 

  61. Keusch, S. and Haessler, R., ‘Influence of Surface Treatment of Glass Fibres on the Dynamic Mechanical Properties of Resin Composites’, Composites Part A <Emphasis Type="Bold">30, 1999, 99–1002.

    Google Scholar 

  62. Keusch, S., Queck, H. and Gliesche, K., ‘Influence of Glass Fibre/Epoxy Resin Interface on Static Mechanical Properties of Unidirectional Composites and on Fatigue Performance of Cross Ply Composites’, Composites Part A <Emphasis Type="Bold">29, 1998, 70–705.

    Google Scholar 

  63. Piggott, M. R., ‘Why Interface Testing by Single-Fibre Methods Can Be Misleading’, Composite Science and Technology <Emphasis Type="Bold">57, 1997, 96–974.

    Google Scholar 

  64. Ramanathan, T., Bismarck, A., Schultz, E. and Subramanian, K., ‘Investigation of the Influence of Acidic and Basic Surface Groups on Carbon Fibres on the Interfacial Shear Strength in an Epoxy Matrix by Means of Single-Fibre Pull-Out Test’, Composite Science and Technology <Emphasis Type="Bold">61, 2001, 59–605.

    Google Scholar 

  65. Drzal, L. T., Sugiura, N. and Hook, D., ‘The Role of Chemical Bonding and Surface Topography in Adhesion between Carbon Fibers and Epoxy Matrices’, Composite Interfaces <Emphasis Type="Bold">4, 1997, 33–354.

    Google Scholar 

  66. Jacobasch, H. J., Grundke, K., Uhlmann, P., Simon, F. and Mäder, E., ‘Comparison of Surface-Chemical Methods for Characterizing Fiber-Epoxy Resin Composites’, Composite Interfaces <Emphasis Type="Bold">3, 1996, 29–320.

    Google Scholar 

  67. Liu, F. P., Wolcott, M. P., Gardner, D. J. and Rials, T. G., ‘Characterization of the Interface between Cellulosic Fibers and a Thermoplastic Matrix’, Composite Interfaces <Emphasis Type="Bold">2, 1994, 41– 432.

    Google Scholar 

  68. Wagner, H. D., Gallis, H. E. and Wiesel, E., ‘Study of the Interface in Kevlar 49-Epoxy Composites by Means of Microbond and Fragmentation Tests: Effects of Materials and Testing Variables’, Journal of Materials Science <Emphasis Type="Bold">28, 1993, 223–2244.

    Google Scholar 

  69. Nardin, M., Asloun, E. M. and Schultz, J., ‘Physico-Chemical Interactions between Carbon Fibers and PEEK’, in Controlled Interfaces in Composite Materials, H. Ishida (ed.), Elsevier, New York, 1990, pp. 28–293.

    Google Scholar 

  70. Nardin, M. and Schultz, J., ‘Relationship between Fibre-Matrix Adhesion and the Interfacial Shear Strength in Polymer-Based Composites’, Composite Interfaces <Emphasis Type="Bold">1, 1993, 17–192.

    Google Scholar 

  71. Nardin, M. and Schultz J., ‘Relations between Work of Adhesion and Equilibrium Interatomic Distance at the Interface’, Langmuir <Emphasis Type="Bold">12, 1996, 423–4242.

    Google Scholar 

  72. Pisanova, E., and Mader, E., ‘Acid-Base Interactions and Covalent Bonding at a Fiber-Matrix Interface: Contribution to the Work of Adhesion and Measured Adhesion Strength’, Journal of Adhesion Science Technol. <Emphasis Type="Bold">14(3), 2000, 41–436.

    Google Scholar 

  73. Shen, W. and Parker, I. H., ‘Surface Composition and Surface Energetics of Various Eucalypt Pulps’, Cellulose <Emphasis Type="Bold">6, 1999, 4–55.

    Google Scholar 

  74. Rield, B. and Kamdem, P. O., ‘Estimation of the Dispersive Component of Surface Energy of Polymer-Grafted Lignocellulosic Fibers with Inverse Gas Chromatography’, Journal of Adhesion Science Technol. <Emphasis Type="Bold">6(9), 1992, 105–1067.

    Google Scholar 

  75. Harkins, W. D., ‘Surface Energy and the Orientation of Molecules in Surfaces as Revealed by Surface Energy Relations’, Z. Phys. Chem. <Emphasis Type="Bold">139, 1928, 64–691.

    Google Scholar 

  76. Mäder, E., Grundke, K., Jacobash, H. J. and Wachinger, G., ‘Surface, Interphase and Composite Property Relations in Fibre-Reinforced Polymers’, Composites <Emphasis Type="Bold">25(7), 1994, 73–744.

    Google Scholar 

  77. Bismarck, A., Richter, D., Wuertz, C. and Springer, J., ‘Basic and Acidic Surface Oxides on Carbon Fiber and Their Influence on the Expected Adhesion to Polyamide’, Colloids Surfaces A <Emphasis Type="Bold">159, 1999, 34–350.

    Google Scholar 

  78. Park, S. J. and Kim, T. J., ‘Studies on Surface Energetics of Glass Fabrics in a Unsaturated Polyester Matrix System: Effect of Sizing Treatment on Glass Fabrics’, Journal of Applied Polymer Science <Emphasis Type="Bold">80, 2001, 143–1445.

    Google Scholar 

  79. Wlodarski, J. F. and Robertson, L. E., ‘Effect of Fabrication Processes on Composite Material Properties’, American Institute of Aeronautics and Astronautics AIAA 97-1325, 1997, 115– 1165.

    Google Scholar 

  80. Abraham, D., Matthews, S. and Mcllhagger, R., ‘A Comparison of Physical Properties of Glass Fibre Epoxy Composites Produced by Wet Lay-Up with Autoclave Consolidation and Resin Transfer Moulding’, Composites Part A <Emphasis Type="Bold">29, 1998, 79–801.

    Google Scholar 

  81. Olivier, P., Cottu, J. P. and Ferret, B., ‘Effects of Cure Cycle Pressure and Voids on Some Mechanical Properties of Carbon/Epoxy Laminates’, Composites <Emphasis Type="Bold">26, 1995, 50–515.

    Google Scholar 

  82. Kang, M. K., Lee, W. I. and Hahn, H. T., ‘Analysis of Vacuum Bag Resin Transfer Molding Process’, Composites Part A <Emphasis Type="Bold">32, 2001, 155–1560.

    Google Scholar 

  83. Sevostianov, I. B., Verijenko, V. E., Von Klemperer, C. J. and Chevallereau, B., ‘Mathematical Model of Stress Formation During Vacuum Resin Infusion Process’, Composites Part B <Emphasis Type="Bold">30, 1999, 51–521.

    Google Scholar 

  84. Pearce, N. R. L., Guild, F. J. and Summerscalesn, J., ‘An Investigation into the Effects of Fabric Architecture on the Processing and Properties of Fibre Reinforced Composites Produced by Resin Transfer Moulding’, Composites Part A <Emphasis Type="Bold">29, 1998, 1–27.

    Google Scholar 

  85. Labat, L., Bréard, J., Pillut-Lesavre, S. and Bouquet, G., ‘Void Fraction Prevision in LCM Parts’, European Physical Journal - Applied Physics <Emphasis Type="Bold">16(2), 2001, 26–279.

    Google Scholar 

  86. Lee, C. L. and Wei, K. H., ‘Effect of Material and Process Variables on the Performance of Resin-Transfer-Molded Epoxy Fabric Composites’, Journal of Applied Polymer Science <Emphasis Type="Bold">77, 2000, 214–2155.

    Google Scholar 

  87. Luo, Y., Verpoest, I., Hoes, K., Vanheule, M., Sol, H. and Cardon, A., ‘Permeability Measurement of Textile Reinforcements with Several Test Fluids’, Composites Part A <Emphasis Type="Bold">32(10), 2001, 149–1504.

    Google Scholar 

  88. Lekakou, C. and Bader, M. G., ‘Mathematical Modelling of Macro-and Micro-Infiltration in Resin Transfer Moulding (RTM)’, Composites Part A <Emphasis Type="Bold">29, 1998, 2–37.

    Google Scholar 

  89. Amico, S. and Lekakou, C., ‘An Experimental Study of the Permeability and Capillary Pressure in Resin-Transfer Moulding’, Composites Science and Technology <Emphasis Type="Bold">61, 2001, 194–1959.

    Google Scholar 

  90. Bradley, W. L. and Grant, T. S., ‘The Effect of the Moisture Absorption on the Interfacial Strength of Polymeric Matrix Composites’, Journal of Materials Science <Emphasis Type="Bold">30, 1995, 553– 5542.

    Google Scholar 

  91. Bowles, K. J. and Frimpong, S., ‘Void Effects on the Interlaminar Shear Strength of Unidirectional Graphite-Fiber-Reinforced Composites’, Journal of Composite Materials <Emphasis Type="Bold">26(10), 1991, 148–1509.

    Google Scholar 

  92. Kaw, K., Mechanics of Composite Materials, CRC Press, New York, 1997.

    Google Scholar 

  93. Greszczuk, L. B., ‘Effect of Voids on Strength Properties of Filamentary Composites’, Paper presented at 22nd Annual Meeting of the Reinforced Plastics Division, Society of the Plastics Industry, Washington DC, 1967, 20A1–20A10.

  94. Costa, M. L., D'Almeida, S. F. M. and Rezende, M. C., ‘The Influence of Porosity on the Interlaminar Shear Strength of Carbon/Epoxy and Carbon/Bismaleimide Fabric Laminates’, Composites Science and Technology <Emphasis Type="Bold">61, 2001, 210–2108.

    Google Scholar 

  95. Wisnom, M. R., Reynolds, T. and Gwilliam, N., ‘Reduction in Interlaminar Shear Strength by Discrete and Distibuted Voids’, Composites Science and Technology <Emphasis Type="Bold">56, 1996, 9–101.

    Google Scholar 

  96. Wu, Y., Shivpuri, R. and Lee, L. J., ‘Effects of Macro and Micro Voids on Elastic Properties of Polymer Composites’, Journal of Reinforced Plastics and Composites <Emphasis Type="Bold">17(15), 1998, 139– 1402.

    Google Scholar 

  97. Hancox, N. L., ‘The Effects of Flaws and Voids on the Shear Properties of CFRP’, Journal of Materials Science <Emphasis Type="Bold">12, 1977, 88–892.

    Google Scholar 

  98. Ghiorse, S. R., ‘Effect of Void Content on the Mechanical Properties of Carbon/Epoxy Laminates’, SAMPE Quarterly, Jan. 1993, 5–59.

  99. Krawczak, P. and Pabiot, J., ‘La mesure des porosités dans les composites industriels et leur incidence sur les propriétés mécaniques’, Composites <Emphasis Type="Bold">3, 1991, 29–295.

    Google Scholar 

  100. Yoshida, H., Ogasa, T. and Hayashi, R., ‘Statistical Approach to the Relationship between ILSS and Void Content of CFRP’, Composites Science and Technology <Emphasis Type="Bold">25, 1986, –16.

    Google Scholar 

  101. Jeong, H., ‘Effects of Voids on the Mechanical Strength and Ultrasonic Attenuation of Laminated Composites’, Journal of Composite Materials <Emphasis Type="Bold">31(3), 1997, 27–292.

    Google Scholar 

  102. Judd, N. C. W. and Wright, W. W., ‘Voids and Their Effects on the Mechanical Properties of Composites’, SAMPE Journal, Jan/Feb 1978, 1–14.

  103. Yoshida, H., ‘Influence of Voids on the Interlaminar Shear Strength of Carbon Fiber Reinforced Plastics’, Advanced Composite Materials <Emphasis Type="Bold">3(2), 1993, 11–122.

    Google Scholar 

  104. Hu, B., Gong, X. J. and Verchery, G., ‘Effets d'environnement hygrothermique sur les comportements mécaniques des composites à matrice époxyde’, Comptes rendus des onzièmes journées nationales sur les composites, JNC 11, AMAC, 1–20 Nov. 1998, 25–264.

  105. Zhang, M. and Mason, S. E., ‘Interlaminar Shear Strength of Carbon Fibre Reinforced Epoxy Composite under the Influence of Environments’, Advanced Composites Letters <Emphasis Type="Bold">7(1), 1998, 2–30.

    Google Scholar 

  106. McBagouluri, F., Garcia, K., Hayes, M., Verghese, K. N. E. and Lesko, J. J., ‘Characterization of Fatigue and Combined Environment on Durability Performance of Glass/Vinyl Ester Composite for Infrastructure Applications’, International Journal of Fatigue <Emphasis Type="Bold">22, 2000, 5–64.

    Google Scholar 

  107. Gellert, E. P. and Turley, D. M., ‘Seawater Immersion Ageing of Glass-Fibre Reinforced Polymer Laminates for Marine Applications’, Composites Part A <Emphasis Type="Bold">30, 1999, 125–1265.

    Google Scholar 

  108. Roberts, R. C., ‘Environmental and Time Dependence of Fracture Toughness and Crack Growth in Glass-Fibre Reinforced Polyester Resins’, Journal of Materials Science <Emphasis Type="Bold">20, 1985, 134–1350.

    Google Scholar 

  109. Davies, P., Mazéas, F. and Casari, P., ‘Sea Water Aging of Glass Reinforced Composites’, Journal of Composite Materials <Emphasis Type="Bold">35(15), 2001, 134–1372.

    Google Scholar 

  110. Srivastava, V. K., ‘Influence of Water Immersion on Mechanical Properties of Quasi-Isotropic Glass Fibre Reinforced Epoxy Vinylester Resin Composites’, Materials Science and Engineering A <Emphasis Type="Bold">263, 1999, 5–63.

    Google Scholar 

  111. Jacquemet, R., ‘Etude du comportement au vieillissement sous charge de stratifiés polyester/verre E en milieu marin’, PhD Thesis, University of Nancy, France, 1989.

    Google Scholar 

  112. Autran, M., Pauliard, R., Gautier, L., Mortaigne, B., Mazeas, F. and Davies P., ‘Influence of Mechanical Stresses on the Hydrolytic Ageing of Standard and Low Styrene Unsaturated Polyester Composites’, Journal of Applied Polymer Science <Emphasis Type="Bold">84, 2002, 218–2195.

    Google Scholar 

  113. Weitsman, Y. J., ‘Composites in the Sea: Sorption, Strength and Fatigue’, Proc. ICCM 12, 1999, Paris (paper 1034).

  114. Newaz, G. M., ‘Influence of Voids on Environmental Degradation of Epoxy Resin’, in NATEC’83: Discovering New Frontiers Through Imagination, 1983, p. 124.

  115. Kotsikos, G., Evans, J. T., Gibson, A. G. and Hale, J. M., ‘Environmentally Enhanced Fatigue Damage in Glass Fibre Reinforced Composites Characterised by Acoustic Emission’, Composites Part A <Emphasis Type="Bold">31, 2000, 96–977.

    Google Scholar 

  116. Pomiès, F., Carlsson, L. and Gillespie, F.W., ‘Marine Environmental Effects on Polymer Matrix Composites’, in Composite Materials: Fatigue and Fracture (Fifth volume), R. H. Martin (ed.), ASTM STP 1230, American Society for Testing and Materials, Philadelphia, 1995, pp. 28–303.

    Google Scholar 

  117. Wu, L., Murphy, K., Karbhari, V. M. and Zhang, J. S., ‘Short-Term Effects of Sea Water on E-Glass/Vinylester Composites’, Journal of Applied Polymer Science <Emphasis Type="Bold">84, 2002, 276–2767.

    Google Scholar 

  118. Gautier, L., Mortaigne, B., Bellenger, V. and Verdu, J., ‘Cinétique et mécanisme de dégradation des propriétés en cisaillement interlaminaire lors du vieillissement thermohydrolytique de composite verre/polyester’, Comptes rendus des onzièmes journées nationales sur les composites JNC 11, AMAC, Arcachon 1998, 24–254.

    Google Scholar 

  119. Wood, C. A. and Bradley, W. L., ‘Determination of the Effect of Seawater on the Interfacial Strength of an Interlayer E-Glass/Epoxy Composite by in situ Observation of Transverse Cracking in an Environmental SEM’, Composites Science and Technology <Emphasis Type="Bold">57, 1997, 103–1043.

    Google Scholar 

  120. Gautier, L., Mortaigne, B. and Bellenger, V., ‘Interface Damage Study of Hydrothermally Aged Glass-Fibre-Reinforced Polyester Composites’, Composites Science and Technology <Emphasis Type="Bold">59, 1999, 232–2337.

    Google Scholar 

  121. Adams, R. D. and Singh, M. M., ‘The Effect of Immersion in Sea Water on the Dynamic Properties of Fibre-Reinforced Flexibilised Epoxy Composites’, Composite Structures <Emphasis Type="Bold">31, 1995, 11–127.

    Google Scholar 

  122. Hogg, P. J. and Hull, D., ‘Corrosion and Environmental Deterioration of GRP’, in Developments in GRP Technology 1, Applied Science Publishers, 1983, Chapter 2.

  123. D’Almeida, J. R. M., ‘Effects of Distilled Water and Saline Solution on the Interlaminar Shear Strength of an Aramid/Epoxy Composite’, Composites <Emphasis Type="Bold">22(6), 1991, 44–450.

  124. Castaing, P., ‘Vieillissement des matériaux composites verre-polyester en milieu marin: délaminage d'origine osmotique’, PhD Thesis, Institut National Polytechnique de Toulouse, France, 1992.

    Google Scholar 

  125. Choqueuse, D., Davies, P., Mazéas, F. and Baizeau, R., ‘Ageing of Composites in Water: Comparison of Five Materials in Terms of Absorption Kinetics and Evolution of Mechanical Properties’, in High Temperature and Environmental Effects on Polymeric Composites (2nd Vol. ASTM STP 1302), T. S. Gates and A. H. Zurieck (eds), American Society for Testing and Materials, 1997, pp. 7–96.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baley, C., Davies, P., Grohens, Y. et al. Application of Interlaminar Tests to Marine Composites. A Literature Review. Applied Composite Materials 11, 99–126 (2004). https://doi.org/10.1023/B:ACMA.0000012902.93986.bf

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ACMA.0000012902.93986.bf

Navigation