Skip to main content
Log in

Unsteadiness of Flow Separation and End-Effects Regime in a Thrust-Optimized Contour Rocket Nozzle

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Turbulent flow separation in over-expanded rocket nozzles is investigated experimentally in a sub-scale model nozzle fed with cold air and having a thrust-optimized contour. Depending upon the pressure ratio either a free shock separation (FSS) or a restricted shock separation (RSS) is observed with a significant hysteresis between these two flow regimes. It is shown that the RSS configuration may involve several separated regions. Analysis of wall pressure fluctuations give quantitative information on the fluctuating pressure field directly connected with the occurrence of significant side loads. Direct measurements of the evolution of the side loads with respect to the pressure ratio show the occurrence of three distinct peaks which are explained by the wall pressure fluctuations measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caisso, P., Brossel, P., Illig, M. and Margat, T., Development status of the Vulcain 2 engine. AIAA Paper 2002–3840 (2002).

  2. Chen, C.L., Chakravarthy, S.R. and Hung, C.M., Numerical investigation of separated nozzle flows. AIAA J. 32 (1994) 1836–1843.

    Article  ADS  Google Scholar 

  3. Dalbies, A., de Spiegeleer, G. and Maquet, C., Engines trade off for Ariane 2010 initiative. AIAA Paper 2002–3839 (2002).

  4. Deck, S. and Guillen, P., Numerical simulation of side-loads in an ideal truncated nozzle. J. Propulsion Power 18 (2002) 261–269.

    Google Scholar 

  5. Frey, M. and Hagemann, G., Status of flow separation prediction in rocket nozzles. AIAA Paper 98–3619 (1998).

  6. Frey, M. and Hagemann, G., Flow separation and side loads in rocket nozzles. AIAA Paper 99–2815 (1999).

  7. Frey, M., Stark, R., Ciezki, H.K., Quessard, F. and Kwan, W., Sub-scale nozzle testing at the P6.2 test stand. AIAA Paper 2000–3777 (2000).

  8. Girard, S., Etude des charges charges latérales dans une tuyère supersonique surdétendue. Ph.D Thesis, Université de Poitiers (1999).

  9. Hagemann, G., Frey, M. and Koschel, W., Appearance of restricted shock separation in rocket nozzles. J. Propulsion Power 18 (2002) 577–584.

    Google Scholar 

  10. Kwan, W. and Stark, R., Flow separation phenomena in sub-scale rocket nozzles. AIAA Paper 2002–4229 (2002).

  11. Nasuti, F. and Onofri, M., Viscous and inviscid vortex generation during startup of rocket nozzles. AIAA J. 36 (1998) 809–815.

    ADS  Google Scholar 

  12. Nave, L.H. and Coffey, G.A., Sea level side loads in high-area-ratio rocket engines. AIAA Paper 73–1284 (1973).

  13. Nguyen, A.T., Deniau, H., Girard, S. and Alziary de Roquefort, T., Wall pressure fluctuations in an over-expanded rocket nozzle. AIAA Paper 2002–4001 (2002).

  14. Nguyen, A.T., Deniau, H., Girard, S. and Alziary de Roquefort T., Asymmetric flow separation in an over-expanded rocket nozzle. In: Zeitoun, D.E., Periaux, J., Désidéri, J.A. and Marini, M. (eds.), West East High Speed Flow Fields 2002. CIMNE, Barcelona (2002).

    Google Scholar 

  15. Onofri, M. and Nasuti, F., The physical origins of side loads in rocket nozzles. AIAA Paper 99–2587 (1999).

  16. Ostlund, J. and Bigert, M., A sub scale investigation on side loads in sea level rocket nozzles. AIAA Paper 99–2759 (1999).

  17. Ostlund, J. and Jaran, M., Assessment of turbulence models in over-expanded rocket nozzle flow simulations. AIAA Paper 99–2583 (1999).

  18. Ostlund, J., Damgaard, T. and Frey, M., Side-load phenomena in highly over-expanded rocket nozzles. AIAA Paper 2001–3684 (2001).

  19. Rao, G.V.R., Approximation of optimum thrust nozzle contours. ARS J. 30 (1960) 561.

    Google Scholar 

  20. Reijasse, P., Bouvier, F. and Servel, P., Experimental and numerical investigation of the capshock structure in over-expanded thrust-optimized nozzles. In: West East High Speed Flow Field Conference (2002).

  21. Schmucker, R.H., Status of separation prediction in liquid propellant rocket nozzles. NASA TM X–68490 (1974).

  22. Stark, R., Kwan, W., Quessard, F., Hagemann, G. and Terhardt, M., Rocket nozzle cold gas test campaigns for plume investigations. Paper presented at Fourth European Symposium on Aerothermodynamics for Space Vehicles (2001).

  23. Terhardt, M., Hagemann, G. and Frey, M., Flow separation and side-load behavior of the vulcain Engine. AIAA Paper 99–2762 (1999).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, A.T., Deniau, H., Girard, S. et al. Unsteadiness of Flow Separation and End-Effects Regime in a Thrust-Optimized Contour Rocket Nozzle. Flow, Turbulence and Combustion 71, 161–181 (2003). https://doi.org/10.1023/B:APPL.0000014927.61427.ad

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPL.0000014927.61427.ad

Navigation