Skip to main content
Log in

Anti-fungal effects of phenolic amides isolated from the root bark of Lycium chinense

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Four phenolic amides, dihydro-N-caffeoyltyramine (1), trans-N-feruloyloctopamine (2), trans-N-caffeoyltyramine (3), and cis-N-caffeoyltyramine (4), were isolated from an ethyl acetate extract of the root bark of Lycium chinense Miller. All had an anti-fungal effect; compounds 1-3 were potent at 5–10 μg ml−1 and were without hemolytic activity against human erythrocyte cells. Compound 4 was active at 40 μg ml−1. All four compounds impeded the dimorphic transition of pathogen, Candida albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blondle SE, Houghten RA (1992) Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry 31: 12688–12694.

    Google Scholar 

  • Chen C-Y, Chang F-R, Yen H-F, Wu Y-C (1998) Amides from stems of Annona cherimola. Phytochemistry 45: 1443–1447.

    Google Scholar 

  • Funayama S, Yoshida K, Konno H, Hikkino H (1980) Structure of Kukoamine A, a hypotensive principle of Lycium chinenseroot bark. Tetrahedron Lett. 21: 1355–1356.

    Google Scholar 

  • Funayama S, Zhang G.-R, Nozoe S (1995) Kukoamine B, a spermine alkaloid from Lycium chinense. Phytochemistry 38: 1529–1531.

    Google Scholar 

  • Han S-H, Lee H-H, Lee I-S, Moon Y-H, Woo E-R (2002) A new phenolic amide from Lycium chinenseMiller. Arch. Pharm. Res. 25: 433–437.

    Google Scholar 

  • Kim SY, Choi Y-H, Huh H, Kim J, Kim YC, Lee HS (1997) New antihepatotoxic cerebroside from Lycium chinenseFruits. J. Nat. Prod. 60: 274–276.

    Google Scholar 

  • Lajide L, Escoubas P, Mizutani J (1995) Termite antifeedant activity in Xylopia aethiopica. Phytochemistry 40: 1105–1112.

    Google Scholar 

  • Lehrer R, Lichtenstein AK, Ganz T (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11: 105–128.

    Google Scholar 

  • Mclain N, Ascanio R, Baker C, Strohaver RA, Dolan JW (2000) Undecylenic acid inhibits morphogenesis of Candida albicans. Antimicrob. Agents Chemother. 44: 2873–2875.

    Google Scholar 

  • Morota T, Sasaki H, Chin M, Sato T, Katayama N, Fukuyama K, Mitsuhashi H (1987) Studies on the crude drug containing the angiotensin I converting enzyme inhibitors(I) on the active principles of Lycium chinenseMiller. Shoyakugaku Zasshi. 41: 169–173.

    Google Scholar 

  • Mühlenbeck U, Kortenbusch A, Barz W (1996) Formation of hydroxycinnamoyl-amides and a-hydroxyacetovanillone in cell cultures of Solanum khasianum. Phytochemistry 42: 1573–1579.

    Google Scholar 

  • Negrel J, Pollet B, Lapierre C (1996) Ether-linked ferulic acid amides in natural and wound periderms of potato tuber. Phytochemistry 43: 1195–1199.

    Google Scholar 

  • Sakakibara I, Katsuhara T, Ikeya Y, Hayashi K, Mitsuhashi H (1991) Cannabisin A, an arylnaphthalene lignanamide from fruits of Cannabis sativa. Phytochemistry 30: 3013–3016.

    Google Scholar 

  • Sannai A, Fujimori T, Kato K (1982) Isolation of (-)-1,2-dehydro-a-cyperone and solavetivone from Lycium chinense. Phytochemistry 21: 2986–2987.

    Google Scholar 

  • Santos LP, Boaventura MA, Oliveira AB, Cassady JM (1996) Grossamide and N-trans-caffeoyltyramine from Annona crassifloraseeds. Plant. Med. 62: 76. 1130

    Google Scholar 

  • Terauchi M, Kanamori H, Nobuso M, Yahara S, Nohara T (1997) Detection and determination of antioxidative components in Lycium chinense. Nat. Med. 51: 387–391.

    Google Scholar 

  • Terauchi M, Kanamori H, Nobuso M, Yahara S, Yamasaki K (1998) New acyclic diterpene glycoside, Lyciumoside IV-IX from Lycium chinenseMill. Nat. Med. 52: 167–171.

    Google Scholar 

  • Wu Y-C, Chang G-Y, Ko F-N, Teng C-M (1995) Bioactive constituents from the stems of Annona montana. Plant. Med. 61: 146–149.

    Google Scholar 

  • Yahara S, Shigeyama C, Ura T, Wakamatsu K, Yasuhara T, Nohara T (1993) Cyclic peptides, acyclic diterpene glycoside and other compounds from Lycium chinenseMill. Chem. Pharm. Bull. 41: 703–709.

    Google Scholar 

  • Yoshihara T, Takamatsu S, Sakamura S (1978) Three new phenolic amides from the roots of eggplant (Solanum melongenaL.). Agric. Biol. Chem. 42: 623–627.

    Google Scholar 

  • Yoshihara T, Yamaguchi K, Takamatsu S, Sakamura S (1981) A new lignan amide, grossamide from bell pepper (Capsicum annumvar. grossum). Agric. Biol. Chem. 45: 2593–2598.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.G., Park, Y., Kim, MR. et al. Anti-fungal effects of phenolic amides isolated from the root bark of Lycium chinense . Biotechnology Letters 26, 1125–1130 (2004). https://doi.org/10.1023/B:BILE.0000035483.85790.f7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BILE.0000035483.85790.f7

Navigation