Skip to main content
Log in

The Role of Adsorbate–Adsorbate Interactions in the Rate Controlling Step and the Most Abundant Reaction Intermediate of NH3 Decomposition on Ru

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

N–N adsorbate–adsorbate interactions on a Ru(0001) surface are first estimated using quantum mechanical density functional theory (DFT) calculations, and subsequently incorporated, for the first time, in a detailed microkinetic model for NH3 decomposition on Ru using the unity bond index-quadratic exponential potential (UBI–QEP) method. DFT simulations indicate that the cross N–H interactions are relatively small. Microkinetic model predictions are compared to ultra-high vacuum temperature programmed desorption and atmospheric fixed bed reactor data. The microkinetic model with N–N interactions captures the experimental features quantitatively. It is shown that the N–N interactions significantly alter the rate determining step, the most abundant reaction intermediate, and the maximum N*-coverage, compared to mechanisms that ignore adsorbate–adsorbate interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Ganley, E. G. Seebauer and R. I. Masel, AIChE J. 50 (2004) 829.

    Google Scholar 

  2. F. Haber and G. van Oordt, Z. Anorg. Chem. 43 (1904) 111.

    Google Scholar 

  3. F. Haber and G. van Oordt, Z. Anorg. Chem. 44 (1905) 341.

    Google Scholar 

  4. W. Tsai and W. H. Weinberg, J. Phys. Chem. 91 (1987) 5302.

    Google Scholar 

  5. S. Dahl, P. A. Taylor, E. Tornquist and I. Chorkendorff, J. Catal. 178 (1998) 679.

    Google Scholar 

  6. C. J.H. Jacobsen, S. Dahl, B. S. Clausen, S. Bahn, A. Logadottir and J. K. Norskov, J. Am. Chem. Soc. 123 (2001) 8404.

    Google Scholar 

  7. J. C. Ganley, E. G. Seebauer and R. I. Masel, (2003) in preparation.

  8. S. Dahl, E. Tornquist and I. Chorkendorff, J. Catal. 192 (2000) 381.

    Google Scholar 

  9. O. Hinrichsen, F. Rosowski, A. Hornung, M. Muhler and G. Ertl, J. Catal. 165 (1997) 33.

    Google Scholar 

  10. O. Hinrichsen, F. Rosowski, M. Muhler and G. Ertl, Stud. Surf. Sci. Catal. 109 (1997) 389.

    Google Scholar 

  11. L. Diekhoner, H. Mortensen, A. Baurichter and A. C. Luntz, J. Vac. Sci. Tech. A 18 (2000) 1509.

    Google Scholar 

  12. L. Diekhoner, H. Mortensen, A. Baurichter and A. C. Luntz, J. Chem. Phys. 115 (2001) 3356.

    Google Scholar 

  13. S. Dahl, A. Logadottir, C. J. H. Jacobsen and J. K. Norskov, Appl. Catal. A: Gen. 222 (2001) 19.

    Google Scholar 

  14. M. C. J. Bradford, P. E. Fanning and M. A. Vannice, J. Catal. 172 (1997) 479.

    Google Scholar 

  15. S. R. Deshmukh, A. B. Mhadeshwar and D. G. Vlachos, Ind. Eng. Chem. Res. (2003) in press.

  16. S. Dahl, J. Sehested, C. J. H. Jacobsen, E. Tornquist and I. Chorkendorff, J. Catal. 192 (2000) 391.

    Google Scholar 

  17. L. Diekhoner, A. Baurichter, H. Mortensen and A. C. Luntz, J. Chem. Phys. 112 (2000) 2507.

    Google Scholar 

  18. M. Boudart and G. Djega–Mariadassou, Kinetics of Heterogeneous Catalytic Reactions (Princeton University Press, Princeton, 1984).

    Google Scholar 

  19. H. Dietrich, K. Jacobi and G. Ertl, Surf. Sci. 352 (1996) 138.

    Google Scholar 

  20. H. Dietrich, K. Jacobi and G. Ertl, J. Chem. Phys. 106 (1997) 9313.

    Google Scholar 

  21. S. Schwegmann, A. P. Seitsonen, H. Dietrich, H. Bludau, H. Over, K. Jacobi and G. Ertl, Chem. Phys. Lett. 264 (1997) 680.

    Google Scholar 

  22. H. Dietrich, K. Jacobi and G. Ertl, J. Chem. Phys. 105 (1996) 8944.

    Google Scholar 

  23. H. Rauscher, K. L. Kostov and D. Menzel, Chem. Phys. 177 (1993) 473.

    Google Scholar 

  24. K. Jacobi, Phys. Stat. Sol. A 177 (2000) 37.

    Google Scholar 

  25. B. Hammer, Phys. Rev.B 63 (2001) 205423(1).

    Google Scholar 

  26. J. J. Mortensen, Y. Morikawa, B. Hammer and J. K. Norskov, J. Catal. 169 (1997) 85.

    Google Scholar 

  27. A. Logadottir and J. K. Norskov, J. Catal. 220 (2003) 273.

    Google Scholar 

  28. I. Alstrup, I. Chorkendorff and S. Ullmann, J. Catal. 168 (1997) 217.

    Google Scholar 

  29. H. Dietrich, P. Geng, K. Jacobi and G. Ertl, J. Chem. Phys. 104 (1996) 375.

    Google Scholar 

  30. G. Ertl, Heterogeneous catalysis on the atomic scale. in: The Chemical Record, Vol. 1 (The Japan Chemical Journal Forum and John Wiley &; Sons(NewYork, 2000) p. 33.

    Google Scholar 

  31. P. Stoltze and J. K. Norskov, Phys. Rev. Lett. 55 (1985) 2502.

    Google Scholar 

  32. S. R. Deshmukh, A. B. Mhadeshwar, M. Lebedeva and D. G. Vlachos, Int. J. Multiscale Comp. Eng. (2004) accepted.

  33. D. Vanderbilt, Phys. Rev. B 41 (1990) 7892.

    Google Scholar 

  34. B. Hammer, O. H. Nielsen, J. J. Mortensen, L. Bengtsson, L. B. Hansen, A. C. E. Madsen, Y. Morikawa, T. Bligaard and A. Christensen, DACAPO version 2.7 (CAMP, Technical University, Denmark).

  35. C. J. Zhang, M. Lynch and P. Hu, Surf. Sci. 496 (2002) 221.

    Google Scholar 

  36. D. J. Dooling, R. J. Nielsen and L. J. Broadbelt, Chem. Eng. Sci. 54 (1999) 3399.

    Google Scholar 

  37. Y. K. Park, P. Aghalayam and D. G. Vlachos, J. Phys. Chem. A 103 (1999) 8101.

    Google Scholar 

  38. P. Aghalayam, Y. K. Park and D. G. Vlachos, AIChE J. 46 (2000) 2017.

    Google Scholar 

  39. J. A. Dumesic, D. F. Rudd, L. M. Aparicio, J. E. Rekoske and A. A. Trevino, The Microkinetics of Heterogeneous Catalysis (American Chemical Society, Washington, DC, 1993).

    Google Scholar 

  40. E. Shustorovich and A. T. Bell, Surf. Sci. Lett. 259 (1991) L791.

    Google Scholar 

  41. E. Shustorovich and H. Sellers, Surf. Sci. Rep. 31 (1998) 1.

    Google Scholar 

  42. E. Shustorovich, Adv. Catal. 37 (1990) 101.

    Google Scholar 

  43. A. B. Mhadeshwar, H. Wang and D. G. Vlachos, J. Phys. Chem.B 107 (2003)12721.

    Google Scholar 

  44. T. V. Choudhary, C. Sivadinarayana and D. W. Goodman, Catl. Lett. 72 (2001) 197.

    Google Scholar 

  45. L. Diekhoner, H. Mortensen, A. Baurichter, A. C. Luntz and B. Hammer, Phys. Rev. Lett. 84 (2000) 4906.

    Google Scholar 

  46. H. Shi, K. Jacobi and G. Ertl, J. Chem. Phys. 99 (1993) 9248.

    Google Scholar 

  47. G. Lauth, E. Schwarz and K. Christmann, J. Chem. Phys. 91 (1989) 3729.

    Google Scholar 

  48. N. Savargaonkar, R. L. Narayan, M. Pruski, D. O. Uner and T. S. King, J. Catal. 178 (1998) 26.

    Google Scholar 

  49. R. L. Narayan and T. S. King, Thermochim. Acta 312 (1998) 105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.G. Vlachos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mhadeshwar, A., Kitchin, J., Barteau, M. et al. The Role of Adsorbate–Adsorbate Interactions in the Rate Controlling Step and the Most Abundant Reaction Intermediate of NH3 Decomposition on Ru. Catalysis Letters 96, 13–22 (2004). https://doi.org/10.1023/B:CATL.0000029523.22277.e1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATL.0000029523.22277.e1

Navigation