Skip to main content
Log in

Mesoporous MEL – Type Zeolite Single Crystal Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

New mesoporous silicalite-2, ZSM-11, and titanosilicalite-2 zeolite single crystals were synthesized by use of carbon particles as a mesopore template. After removal of the carbon particles by combustion, zeolite single crystals with intracrystalline mesopore volumes between 0.31 and 0.44 cm3/g were isolated. All samples were characterized by XRD, SEM and adsorption measurements. Isomerization and cracking of n-hexadecane, and epoxidation of oct-1-ene and styrene were chosen as model test reactions. The mesoporous zeolite single catalysts were generally found to exhibit high activity in these model reactions. The advantage of introducing an intracrystalline mesopore system into zeolite catalysts is attributed to the resulting improvements in the mass transport to and from the active sites. This is particularly important for more bulky reactants, intermediates and products and especially under experimental conditions giving high reaction rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Corma, Chem. Rev. 95 (1995) 559.

    Google Scholar 

  2. P.A. Jacobs and J.A. Martens, Stud. Surf. Sci. Catal. 58 (1991) 445.

    Google Scholar 

  3. S. Donk, A.H. Janssen, J.H. Bitter and K.P. Jong, Catal. Rev. 45 (2003) 297.

    Google Scholar 

  4. K.J. Balkus and A.G. Gabrielov, U.S. Patent 5,489,424 (1996).

    Google Scholar 

  5. C.C. Freyhardt, M. Tsapatsis, R.F. Lobo, K.J. Balkus and M.E. Davis, Nature 81 (1996) 295.

    Google Scholar 

  6. M. Yoshikawa, P. Wagner, M. Lovallo, K. Tsuji, T. Takewaki, C.Y. Chen, L.W. Beck, C. Jones, M. Tsapatsis, S.I. Zones and M.E. Davis, J. Phys. Chem. B 102 (1998) 7139.

    Google Scholar 

  7. A. Corma, M.J. Diaz-Cabanas, J. Martinez-Triguero, F. Rey and J. Rius, Nature 418 (2000) 514.

    Google Scholar 

  8. C.T. Kresge, M.E. Loenowicz, W.J. Roth, J.C. Vartuli and J.S. Beck, Nature 359 (1992) 710.

    Google Scholar 

  9. M.C. Lovallo and M. Tsapatsis, Adv. Catal. Nanostruct. Mater. 13 (1996) 307.

    Google Scholar 

  10. B.J. Schoeman, K. Higberg and J. Sterte, Nanoparticles Micropor. Mater. 12 (1999) 49.

    Google Scholar 

  11. M.A. Camblor, A. Corma and S. Valencia, Micropor. Mesopor. Mater. 25 (1998) 59.

    Google Scholar 

  12. C. Madsen and C.J.H. Jacobsen, Chem. Commun. (1999) 673.

  13. P.A. Jacobs, E.G. Derouane and J. Weitkamp, J. Chem. Soc., Chem. Commun. (1981) 591.

  14. S. Morin, P. Ayrault, N.S. Gnep and M. Guisnet, Appl. Catal. A: Gen. 166 (1998) 281.

    Google Scholar 

  15. M. Ogura, S.H. Shinomiya, J. Tateno, Y. Nara, E. Kikuchi and M. Matsukata, Chem. Lett. (2000) 882.

  16. C.J.H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt and A. Carlsson, J. Am. Chem. Soc. 122 (2000) 7116.

    Google Scholar 

  17. I. Schmidt, A. Boisen, E. Gustavsson, K. Ståhl, S. Pehrson, S. Dahl, A. Carlsson and C.J.H. Jacobsen, Chem. Mater. 13 (2001) 4416.

    Google Scholar 

  18. C.J.H. Jacobsen, C. Madsen and I. Schmidt, Inorg. Chem. 39 (2000) 2279.

    Google Scholar 

  19. C.J.H. Jacobsen, C. Madsen, T.V.W. Janssens, H.J. Jakobsen and J. Skibsted, Micropor. Mesopor. Mater. 39 (2000) 393.

    Google Scholar 

  20. A. Carlsson, C. Madsen, I. Schmidt, J. Houzvicka and C.J.H. Jacobsen, European Patent 1106575, 2001.

  21. A.N. Janssen, I. Schmidt, C.J.H. Jacobsen, A.J. Koster and K.P. Jong, Micropor. Mesopor. Mater. 65 (2003) 59.

    Google Scholar 

  22. C.H. Christensen, K. Johannsen, I. Schmidt and C.H. Christensen, J. Am. Chem. Soc. 125 (2003) 13370.

    Google Scholar 

  23. I. Schmidt, A. Krogh, K. Wienberg, A. Carlsson, M. Brorson and C.J.H. Jacobsen, Chem. Commun. (2000) 2157.

  24. Y. Tao, H. Kanoh and K. Kaneko, J. Phys. Chem. B 107 (2003) 10974.

    Google Scholar 

  25. I.I. Ivanova, D. Brunel, J.B. Nagy and E.D. Derouane, J. Mol. Catal. A: Chem. 95 (1995) 243.

    Google Scholar 

  26. J. Weitkamp, A. Raichle and Y. Traa, Appl. Catal. A: Gen. 222 (2001) 277.

    Google Scholar 

  27. M. Taramasso, G. Perego and B. Notari, U.S. Patent, 4410501, 1983.

  28. T. Sato, J. Dakka and R.A. Sheldon, Stud. Surf. Sci. Catal. 84 (1994) 1853.

    Google Scholar 

  29. I.E. Maxwell, J.K. Minderhoud, W.H.J. Stork and J.A.R. van Veen in: Handbook of Heterogeneous Catalysis, Vol. 4, eds. G. Ertl, H. Knozinger and J. Weitkamp (1997) p.2017.

  30. M.G. Clerici and P. Ingallina, J. Catal. 140 (1993) 71.

    Google Scholar 

  31. M.C. Capel-Sanchez, J.M. Campos-Martin and J.L.G. Fierro, Appl. Catal. A: Gen. 246 (2003) 69.

    Google Scholar 

  32. M.A. Uguina, D.P. Serrano, R. Sanz, J.L.G. Fierro, M. Lopez-Granados and R. Mariscal, Catal. Today 61 (2000) 263.

    Google Scholar 

  33. S.C. Laha and R. Kumar, J. Catal. 208 (2002) 339.

    Google Scholar 

  34. S.B. Kumar, S.P. Mirajkar, G.C.G. Pais, P. Kumar and R. Kumar, J. Catal. 156 (1995) 163.

    Google Scholar 

  35. C. Neri and F. Buonomo, Italy Patent, Anic, Sp. a. 513804 (4609765), 1986.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Yu. Kustova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kustova, M.Y., Hasselriis, P. & Christensen, C.H. Mesoporous MEL – Type Zeolite Single Crystal Catalysts. Catalysis Letters 96, 205–211 (2004). https://doi.org/10.1023/B:CATL.0000030122.37779.f4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATL.0000030122.37779.f4

Navigation