Skip to main content
Log in

Chemisorbed Oxygen Species over the (110) Face of SnO2

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The electronic states of chemisorbed oxygen species on the (110) face of SnO2 and their variations caused by heat treatments and/or O2 exposure have been investigated. The reactivities of the chemisorbed oxygen species for methane oxidations were also examined.

Four different chemisorbed oxygen species (O2 2-, O2-, O-, Ob) were observed, in addition to the lattice oxygen (O2-), on the surface of the stabilized (110) surface of SnO2 after O2 exposure. The Ob species was assumed to be the bridging oxygen at the topmost layer of the SnO2 (110) surface having no neighboring oxygen vacancies. The electronic state of Ob was converted to O- upon CH4 exposure at 473 K by coupling with newly produced vacancies at the bridging site of the SnO2 (110) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, New York, 1994).

    Google Scholar 

  2. C. Wagner, J. Chem. Phys. 18 (1950) 69.

    Google Scholar 

  3. K. Haffe, Adv. Catal. 7 (1955) 366.

    Google Scholar 

  4. A. Bielanski, J. Deren and J. Haber, Nature 179 (1957) 668.

    Google Scholar 

  5. J. Oviedo and M. J. Gillan, Surf. Sci. 463 (2000) 93.

    Google Scholar 

  6. D. F. Cox, T. B. Fryberger and S. Semancik, Phys. Rev. B 38 (1988) 2072.

    Google Scholar 

  7. S. Chang, J. Vac. Sci. Technol. 17 (1980) 366.

    Google Scholar 

  8. G. L. Shen, R. Casanova and G. Thornton, Vacuum 43 (1992) 1129.

    Google Scholar 

  9. Y. Nagasawa, T. Choso, T. Karasuda, S. Shimomura, F. Ouyang, K. Tabata and Y. Yamaguchi, Surf. Sci. 433–435 (1999) 226.

    Google Scholar 

  10. M. S. Hegde and M. Ayyoob, Surf. Sci. 173 (1986) L635.

    Google Scholar 

  11. C. N. R. Rao, V. Vijayakrishnan, G. U. Kulkarni and M. K. Rajumon, Appl. Surf. Sci. 84 (1995) 285.

    Google Scholar 

  12. G. Gaggiotti, A. Galdikas, S. Kaciulis, G. Mattongo and A. Setkus, J. Appl. Phys. 76 (1994) 4467.

    Google Scholar 

  13. J. P. S. Badyal, X. Zhang and R. M. Lambert, Surf. Sci. Lett. 225 (1990) L15.

    Google Scholar 

  14. P. V. Kamath and C. N. R. Rao, J. Phys. Chem. 88 (1984) 464.

    Google Scholar 

  15. S. L. Qui, C. L. Lin, J. Chen and M. Strongin, Phys. Rev. B39 (1989) 6194.

    Google Scholar 

  16. T. Kawabe, K. Tabata, E. Suzuki, Y. Yamaguchi and Y. Nagasawa, J. Phys. Chem. B 105 (2001) 4239.

    Google Scholar 

  17. T. Kawabe, S. Shimomura, T. Karasuda, K. Tabata, E. Suzuki and Y. Yamaguchi, Surf. Sci. 448 (2000) 101.

    Google Scholar 

  18. Y. Yamaguchi, Y. Nagasawa, A. Murakami and K. Tabata, Int. J. Quantum Chem. 69 (1998) 669.

    Google Scholar 

  19. J. Hrbek, G. Q. Xu, T. K. Sham and H. L. Shek, J. Vac. Sci. Technol. A7 (1989) 2013.

    Google Scholar 

  20. B. Woratschek, W. Sesselmann, J. Kuppers, G. Ertl and H. Haberland, J. Chem. Phys. 86 (1987) 2411.

    Google Scholar 

  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Patterson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian '94 (Gaussian, Inc., Pittsburgh, PA, 1995).

    Google Scholar 

  22. A. D. Becke, Phys. Rev. A38 (1988) 3098.

    Google Scholar 

  23. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B37 (1988) 785.

    Article  Google Scholar 

  24. P. Meriaudeai, C. Naccache and A. J. Tench, J. Catal. 21 (1971) 208.

    Google Scholar 

  25. Y. Yamaguchi, Y. Nagasawa, S. Shimomura, K. Tabata and E. Suzuki, Chem. Phys. Lett. 316 (2000) 477–482.

    Google Scholar 

  26. B. Delley, J. Chem. Phys. 92 (1990) 503, DMol3 ver. 3.9 of Cerius2 program suite is available from Molecular Simulations Inc., San Diego, CA.

    Google Scholar 

  27. H. Nakatsuji, Z.-H. Hu, H. Nakai and K. Ikeda, Surf. Sci. 387 (1997) 328.

    Google Scholar 

  28. T. L. Barr, Modern ESCA, Chapter 8 (CRC Press, Boca Raton, 1994) p. 189.

    Google Scholar 

  29. M. Che and A. J. Tench, Adv. Catal. 31 (1982) 77.

    Google Scholar 

  30. J. M. Vohs and M. A. Barteai, Surf. Sci. 176 (1986) 91

    Google Scholar 

  31. [auK. S. Kim and M. A. Barteai, Surf. Sci. 223 (1989) 13.

    Google Scholar 

  32. T. Kawabe, K. Tabata, E. Suzuki and Y. Nagasawa, Surf. Sci. 454–456 (2000) 374

    Google Scholar 

  33. T. Kawabe, K. Tabata, E. Suzuki and Y. Nagasawa, Surf. Sci. 482–485 (2001) 183.

    Google Scholar 

  34. V. A. Gercher, D. F. Cox and J. Themlin, Surf. Sci. 306 (1994) 279.

    Google Scholar 

  35. Y. Yamaguchi, Y. Nagasawa, S. Shimomura and K. Tabata, Int. J. Quantum Chem. 74 (1999) 423.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Tabata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabata, K., Kawabe, T., Yamaguchi, Y. et al. Chemisorbed Oxygen Species over the (110) Face of SnO2 . Catalysis Surveys from Asia 7, 251–259 (2003). https://doi.org/10.1023/B:CATS.0000008164.21582.92

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATS.0000008164.21582.92

Navigation