Skip to main content
Log in

Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Stalk lodging in maize results in significant yield losses. We have determined that cellulose per unit length of the stalk is the primary determinant of internodal strength. An increase in cellulose concentration in the wall might allow simultaneous improvements in stalk strength and harvest index. Cellulose formation in plants can be perturbed by mutations in the genes involved in cellulose synthesis, post-synthetic cellulose alteration or deposition, N-glycosylation, and some other genes with as yet unknown functions. We have isolated 12 members of the cellulose synthase (CesA) gene family from maize. The genes involved in primary wall formation appear to have duplicated relatively independently in dicots and monocots. The deduced amino acid sequences of three of the maize genes, ZmCesA10–12, cluster with the Arabidopsis CesA sequences that have been shown to be involved in secondary wall formation. Based on their expression patterns across multiple tissues, these three genes appear to be coordinately expressed. The remaining genes show overlapping expression to varying degrees with ZmCesA1, 7, and 8 forming one group, ZmCesA3 and 5 a second group, and ZmCesA2 and 6 exhibiting independent expression of any other gene. This suggests that the varying levels of coexpression may just be incidental except in the case of ZmCesA10–12, which may interact with each other to form a functional enzyme complex. Isolation of the expressed CesA genes from maize and their association with primary or secondary wall formation has made it possible to test their respective roles in cellulose synthesis through mutational genetics or transgenic approaches. This information would be useful in improving stalk strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arioli T., Peng L., Betzner Andreas S., Burn J., Wittke W., Herth W., Camilleri C., Hofte H., Plazinski J., Birch R., Cork A., Glover J., Redmond J.and Williamson R.E.1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720.

    Google Scholar 

  • Beeckman T., Przemeck G.K.H., Stamatiou G., Lau R., Terryn N., De Rycke R., Inze D.and Berleth T.2002.Genetic complexity of cellulose synthase.A gene function in Ara-bidopsis embryogenesis.Plant Physiol.130:1883–1893.

    Google Scholar 

  • Boisson M., Gomord V., Audran C., Berger N., Dubreucq B., Granier F., Lerouge P., Faye L., Caboche M.and Lepiniec L. 2001.Arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development.Embo J.20:1010–1019.

    Google Scholar 

  • Brenner S., Johnson M., Bridgham J., Golda G., Lloyd D.H., Johnson D., Luo S., McCurdy S., Foy M., Ewan M., Roth R., George D., Eletr S., Albrecht G., Vermaas E., Williams S.R., Moon K., Burcham T., Pallas M., DuBridge R.B., Kirchner J., Fearon K., Mao J.I.and Corcoran K.2000a. Gene expression analysis by massively parallel signature sequencing (MPSS)on microbead arrays.Nature Biotechnol. 18:630–634.

    Google Scholar 

  • Brenner S., Williams S.R., Vermaas E.H., Storck T., Moon K., McCollum C., Mao J.I., Luo S., Kirchner J.J., Eletr S., DuBridge R.B., Burcham T.and Albrecht G.2000b.In vitro cloning of complex mixtures of DNA on microbeads:Phys ical separation of differentially expressed cDNAs.Proc.Natl. Acad.Sci.USA97:1665–1670.

    Google Scholar 

  • Burn J.E., Hurley U.A., Birch R.J., Arioli T., Cork A.and Williamson R.E.2002.The cellulose-deficient Arabidopsis mutant rsw3 is defective in a gene encoding a putative glucosidase II,an enzyme processing N-glycans during ER quality control.Plant J.32:949–960.

    Google Scholar 

  • Burton R.A., Shirley N.J., King B.J., Harvey A.J.and Fincher G.B.2003.The CesA gene family of barley.Quantitative analysis of transcripts reveals two groups of co-expressed genes.Plant Physiol.134:224–236.

    Google Scholar 

  • Cano-Delgado A., Peneld S., Smith C., Catley M.and Bevan M.2003.Reduced cellulose synthesis invokes ligni cation and defense responses in Arabidopsis thaliana. Plant J.34:351–362.

    Google Scholar 

  • Cano-Delgado A.I., Metzla K.and Bevan M.W.2000.The eli1 mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana. Development 127:3395–3405.

    Google Scholar 

  • Carpita N.C.1996.Structure and biogenesis of the cell walls of grasses.Ann.Rev.Plant Physiol.Plant.Mol.Biol.47:445–476.

    Google Scholar 

  • Delmer D.1999.Cellulose biosynthesis:exciting times for a difficult eld of study.Ann.Rev.Plant Physiol.Plant Mol. Biol.50:245–276.

    Google Scholar 

  • Desprez T., Vernhettes S., Fagard M., Refregier G., Desnos T., Aletti E., Py N., Pelletier S.and Hofte H.2002.Resistance against herbicide isoxaben and cellulose de ciency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiol.128:482–490.

    Google Scholar 

  • Dhugga K.S.2001.Building the wall:genes and enzyme com-plexes for polysaccharide synthases.Curr.Opin.Plant Biol. 4:488–493.

    Google Scholar 

  • Dhugga K.S., Barreiro R., Whitten B., Stecca K., Hazebroek J., Randhawa G.S., Dolan M., Kinney A.J., Tomes D., Nichols S.and Anderson P.2004.Guar seed beta-mannan synthase is a member of the cellulose synthase super gene family.Science 303:363–366.

    Google Scholar 

  • Dhugga K.S.and Ray P.M.1994.Purification of 1,3-beta-glucan synthase activity from pea tissue:two polypeptides of 55 kDa and 70 kDa copurify with enzyme activity.Eur.J. Biochem.220:943–953.

    Google Scholar 

  • Doblin M.S., De M.L., Newbigin E., Bacic A.and Read S.M. 2001.Pollen tubes of Nicotiana alata express two genes from different beta-glucan synthase families.Plant Physiol. 125:2040–2052.

    Google Scholar 

  • Doblin M.S., Kurek I., Jacob W.D.and Delmer D.P.2002. Cellulose biosynthesis in plants:from genes to rosettes.Plant Cell Physiol.43:1407–1420.

    Google Scholar 

  • Duvick D.N.and Cassman K.G.1999.Post-green revolution trends in yield potential of temperate maize in the north-central United States.Crop Sci.39:1622–1630.

    Google Scholar 

  • Ellis C., Karafyllidis I., Wasternack C.and Turner J.G.2002. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses.Plant Cell 14:1557–1566.

    Google Scholar 

  • Fagard M., Desnos T., Desprez T., Goubet F., Refregier G., Mouille G., McCann M., Rayon C., Vernhettes S.and Hofte H.2000.PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis.Plant Cell 12:2409–2423.

    Google Scholar 

  • Felsenstein J.1985.Confidence limits on phylogenies:an ap-proach using the bootstrap.Evolution 39:783–791.

    Google Scholar 

  • Gardiner J.C., Taylor N.G.and Turner S.R.2003.Control of cellulose synthase complex localization in developing xylem. Plant Cell 15:1740–1748.

    Google Scholar 

  • Gillmor C.S., Poindexter P., Lorieau J., Palcic M.M.and Somerville C.2002.a Glucosidase I is required for cellulose biosynthesis and morphogenesis in Arabidopsis. J.Cell Biol. 156:1003–1013.

    Google Scholar 

  • Haigler C.H., Brown R.M.Jr.and Benziman M.1980.Calco-uor white ST alters the in vivo assembly of cellulose microbrils.Science 210:903–906.

    Google Scholar 

  • Haigler C.H., Ivanova D.M., Hogan P.S., Salnikov V.V., Hwang S., Martin K.and Delmer D.P.2001.Carbon partitioning to cellulose synthesis. Plant Mol.Biol. 47:29–51.

    Google Scholar 

  • Hauser M.T., Morikami A.and Benfey P.N.1995.Conditional root expansion mutants of Arabidopsis. Development 121:1237–1252.

    Google Scholar 

  • Hazen S.P., Scott C.J.S.and Walton J.D.2002.Cellulose syn-thase-like genes of rice.Plant Physiol.128:336–340.

    Google Scholar 

  • Holland N., Holland D., Helentjaris T., Dhugga K.S., Xoco-nostle-Czares B.and Delmer D.P.2000.A comparative analysis of the plant cellulose synthase (CesA )gene family. Plant Physiol. 123:1313–1323.

    Google Scholar 

  • Hoth S., Morgante M., Sanchez J.P., Hanafey M.K., Tingey S.V.and Chua N.H.2002.Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant.J.Cell Sci.115:4891–4900.

    Google Scholar 

  • Hu W.J., Harding S.A., Lung J., Popko J.L., Ralph J., Stokke D.D., Tsai C.J.and Chiang V.L.1999.Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees.Nat.Biotechnol.17:808–812.

    Google Scholar 

  • Kadam K.L.and McMillan J.D.2003.Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresource Technol. 88:17–25.

    Google Scholar 

  • Kimura S., Laosinchai W., Itoh T., Cui X., Linder C.R.and Brown R.M.Jr.1999.Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell. 11:2075–2085.

    Google Scholar 

  • Kuhad R.C.and Singh A.1993.Lignocellulose biotechnology: current and future prospects. Crit.Rev.Biotechnol. 13:151–172.

    Google Scholar 

  • Kurek I., Kawagoe Y., Jacob W.D., Doblin M.and Delmer D. 2002.Dimerization of cotton ber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc.Natl.Acad.Sci.USA 99:11109–11114.

    Google Scholar 

  • Levy I., Shani Z.and Shoseyov O.2002.Modi cation of polysaccharides and plant cell wall by endo-1,4 beta-glucan-ase and cellulose-binding domains. Biomol.Eng. 19:17–30.

    Google Scholar 

  • Li L., Zhou Y., Cheng X., Sun J., Marita J.M., Ralph J.and Chiang V.L.2003a.Combinatorial modi cation of multiple lignin traits in trees through multigene cotransformation. Proc.Natl.Acad.Sci.USA 100:4939–4944.

    Google Scholar 

  • Li Y.H., Qian O., Zhou Y.H., Yan M.X., Sun L., Zhang M., Fu Z.M., Wang Y.H., Han B., Pang X.M., Chen M.S.and Li J.Y.2003b.{atBRITTLE CULM, which encodes a COBRA-like proteina.ects the mechanical properties of rice plants}. Plant Cell 15:2020–2031.

    Google Scholar 

  • Lukowitz W., Nickle T.C., Meinke D.W., Last R.L., Conklin P.L.and Somerville C.R.2001.Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose biosynthesis.Proc.Natl.Acad.Sci.USA 98:2262–2267.

    Google Scholar 

  • Matthysse A.G., White S.and Lightfoot R.1995.Genes required for cellulose synthesis in Agrobacterium tumefaciens. J.Bacteriol. 177:1069–1075.

    Google Scholar 

  • Meyers B.C., Morgante M.and Michelmore R.W.2002.TIR-X and TIR-NBS proteins:Two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J. 32:77–92.

    Google Scholar 

  • Mølhøj M., Pagant S.and Hofte H.2002.Towards under-standing the role of membrane-bound endo-beta-1,4-glucan-ases in cellulose biosynthesis.Plant Cell Physiol.43:1399–1406.

    Google Scholar 

  • Nicol F., His I., Jauneau A., Vernhettes S., Canut H.and Hofte H.1998.A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis.EMBO J.17:5562–5576.

    Google Scholar 

  • Niklas K.J.1992.Plant Biomechanics:An Engineering Ap-proach to Plant Form and Function,1st ed.The University of Chicago Press, Chicago,Illinois,p.607.

    Google Scholar 

  • Pagant S., Bichet A., Sugimoto K., Lerouxel O., Desprez T., McCann M., Lerouge P., Vernhettes S.and Hofte H.2002. KOBITO 1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis. Plant Cell 14:2001–2013.

    Google Scholar 

  • Pear J.R., Kawagoe Y., Schreckengost W.E., Delmer D.P.and Stalker D.M.1996.Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc.Natl.Acad.Sci.USA 93:12637–12642.

    Google Scholar 

  • Peng L., Kawagoe Y., Hogan P.and Delmer D.2002.Sitos-terol-beta-glucoside as primer for cellulose synthesis in plants. Science 295:147–148.

    Google Scholar 

  • Richmond T.A.and Somerville C.R.2000.The cellulose synthase superfamily. Plant Physiol. 124:495–498.

    Google Scholar 

  • Richmond T.A.and Somerville C.R.2001.Integrative ap-proaches to determining Csl function. Plant Mol.Biol. 47:131–143.

    Google Scholar 

  • Russell W.A.1985.Evaluation of plant,ear,and grain traits of maize cultivars representing seven eras of breeding. Maydica 30:85–90.

    Google Scholar 

  • Scheible W.R., Eshed R., Richmond T., Delmer D.and Somerville C.2001.Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proc.Natl.Acad.Sci.USA 98:10079–10084.

    Google Scholar 

  • Scheible W.R.and Pauly M.2004.Glycosyltransferases and cell wall biosynthesis:novel players and insights. Curr.Opin. Plant Biol. 7:285–295.

    Google Scholar 

  • Sinclair T.R.1998.Historical changes in harvest index and crop nitrogen accumulation. Crop Sci. 38:638–643.

    Google Scholar 

  • Swofford D.L.1998.PAUP*:Phylogenetic Analysis Using Parsimony (and Other Methods),Version 4.Sinauer Asso-ciates,Sunderland,MA.

  • Szyjanowicz P.M.J., McKinnon I., Taylor N.G., Gardiner J., Jarvis M.C.and Turner S.R.2004. The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J. 37:730–740.

    Google Scholar 

  • Tanaka K., Murata K., Yamazaki M., Onosato K., Miyao A. and Hirochika H.2003.Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol. 133:73–83.

    Google Scholar 

  • Tang G.Q.and Sturm A.1999.Antisense repression of sucrose synthase in carrot (Daucus carota L.)affects growth rather than sucrose partitioning. Plant Mol.Biol. 41:465–479.

    Google Scholar 

  • Taylor N.G., Howells R.M., Huttly A.K., Vickers K.and Turner S.R.2003.Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc.Natl.Acad. Sci.USA 100:1450–1455.

    Google Scholar 

  • Taylor N.G., Laurie S.and Turner S.R.2000.Multiple cellu-lose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12:2529–2539.

    Google Scholar 

  • Taylor N.G., Scheible W.R., Cutler S., Somerville C.R.and Turner S.R.1999.The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11:769–779.

    Google Scholar 

  • Thompson J.D., Higgins D.G.and Gibson T.J.1994.CLUS-TAL W:Improving the sensitivity of progressive multiple sequence alignment through sequence weighting,position specific gap penalties and weight matrix choice. Nucleic Acid Res. 22:4673–4680.

    Google Scholar 

  • Tollenaar M.and Wu J.1999.Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci. 39:1597–1604.

    Google Scholar 

  • Turner S.R.and Somerville C.R.1997.Collapsed xylem phe-notype of Arabidopsis identies mutants de cient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701.

    Google Scholar 

  • Updegra D.M.1969.Semimicro determination of cellulose in biological materials. Anal.Biochem. 32:120–124.

    Google Scholar 

  • Ward J.H.1963.Hierarchical grouping to optimize an objective function. J.Am.Stat.Assoc. 58:236–244.

    Google Scholar 

  • Wu L., Joshi C.P.and Chiang V.L.2000.A xylem-speci c cellulose synthase gene from aspen (Populus tremuloides )is responsive to mechanical stress. Plant J. 22:495–502.

    Google Scholar 

  • Zhong R.Q., Morrison W.H., Freshour G.D., Hahn M.G.and Ye Z.H.2003.Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis. Plant Physiol. 132:786–795.

    Google Scholar 

  • Zuber M.S., Colbert T.R.and Darrah L.L.1980.Effect of recurrent selection for crushing strength on several stalk components in maize (Zea Mays ) Crop Sci. 20:711–717.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appenzeller, L., Doblin, M., Barreiro, R. et al. Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 11, 287–299 (2004). https://doi.org/10.1023/B:CELL.0000046417.84715.27

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CELL.0000046417.84715.27

Navigation