Skip to main content
Log in

A fracture criterion for blunted V-notched samples

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper shows how the cohesive zone model can help in predicting fracture loads of brittle components with blunted V-notches. Linear Elastic Fracture Mechanics cannot be applied in such cases because there are no singularities; there is no crack, and neither is the notch sharp. Numerical predictions based on the cohesive zone model were checked succesfully against experimental measurements for PMMA at −60 °C (made by the authors) and steel, zirconia, silicon nitride and alumina by other researchers. The concept of a critical stress concentration factor, well established for sharp V-notches, is generalized, under certain circumstances, to blunted V-notches, and a non dimensional formulation of the fracture criterion is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abaqus. (2000). Abaqus/Standard user's manual, version 6.1. Hibbitt, Karlsson and Sorensen, Inc.

    Google Scholar 

  • Bazant, Z.P. and Planas, J. (1998). Fracture and Size Effect in Concrete and other Quasibrittle Materials. Chap. 7. CRC Press.

  • Bazant, Z.P. and Zi, G. (2003)Asymptotic stress intensity factor density profiles for smeared-tip method for cohesive fracture. International Journal of Fracture 119, 145–159.

    Article  Google Scholar 

  • Carpinteri, A. (1987). Stress-singularity and generalized fracture toughness at the vertex of re-entrant corners. Engineering Fracture Mechanics 26, 143–155.

    Article  Google Scholar 

  • Dunn, M.L., Suwito, W. and Cunningham, S.J. (1997). Fracture initiation at sharp notches: Correlation using critical stress intensities. International Journal of Solids and Structures 34, 3873–3883.

    Article  Google Scholar 

  • Elices, M., Guinea, G.V., Gómez, J. and Planas, J. (2002). The cohesive zone model. Advantages, limitations and challenges. Engineering Fracture Mechanics 69, 137–163.

    Article  Google Scholar 

  • Elices, M. and Planas, J. (1989). Materials models. In Fracture Mechanics of Concrete Structures, (edited by L. Elfgren). Chapman and Hall, London, 16–66.

    Google Scholar 

  • Elices, M., Planas, J. and Guinea, G.V. (2000). Fracture mechanics applied to concrete. In: Fracture Mechanics: Applications and Challenges (edited by M. Fuentes et al.) ESIS 26. Elsevier, 183–210.

  • Estevez, R., Tijssens,M.G.A. and van der Giessen, E. (2000). Modeling of the competition between shear yielding and crazing in glassy polymers. J. Mech. and Physics of Solids 48, 2585–2617.

    Article  Google Scholar 

  • Filippi, S., Lazzarin, P. and Tovo, R. (2002). Developments of some explicit formulas useful to describe elastic stress fields ahead of notches in plates. International Journal of Solids and Structures 39, 4543–4565.

    Article  Google Scholar 

  • Gogotsi, G.A. (2003). Fracture toughness of ceramics and ceramic composites. Ceramics International 29, 777–784.

    Article  Google Scholar 

  • Gómez, F.J. (1998). Un criterio de rotura en sólidos entallados. PhD. Thesis. Universidad Politécnica de Madrid.

  • Gómez, F.J. and Elices, M. (2003). A fracture criterion for sharp V-notched samples. International Journal of Fracture (123, 163–175).

    Article  Google Scholar 

  • Gómez, F.J., Elices, M. and Planas, J. (2004). The cohesive crack concept: Application to PMMA at -60 ?C. (submitted for publication).

  • Gradin, P.A. (1982). A fracture criterion for edge-bonded bi-material bodies. Journal Composites Material 16, 448–456.

    Google Scholar 

  • Guinea, G.V., Planas, J. and Elices M. (1994). A general bilinear fit for the softening curve of concrete. Materials and Structures 27, 99–105.

    Google Scholar 

  • Knésl, Z. (1991). A criterion of V-notch stability. International Journal of Fracture 48, R79–R83.

    Google Scholar 

  • Lin G., Cornec A. and Schwalbe, K.H. (1998). There-dimensional finite element simulation of crack extension in aluminium alloy 2024 FC. Fatigue and Fracture of Engineering Materials and Structures 21, 1159–1173.

    Article  Google Scholar 

  • Pastor, J.Y. (1993). Fractura de materiales cerámicos estructurales avanzados. PhD. Thesis. Universidad Complutense de Madrid.

  • Pildey, W.D. (1997). Peterson's stress concentration factors. John Wiley and Sons Inc.

  • Planas, J., Guinea, C.V. and Elices, M. (1999). Integral equation method for modeling cracking in concrete. Computational Fracture in Concrete Technology, (Edited by M.H. Aliabadi and A. Carpinteri), Chapter 4, WIT Press, Boston, Southampton, 103–132.

    Google Scholar 

  • Planas, J., Elices, M., Guinea, G.V., Gómez, F.J., Cendón, D.A. and Arbilla I. (2003). Generalizations andspecializations of cohesive crack models. Engineering Fracture Mechanics 70, 1759–1776.

    Article  Google Scholar 

  • Schneider, S.J. (1991). Ceramics and Glasses. Vol. 4 Engineered Materials Handbook. ASM International. Seweryn, A. (1994). Brittle fracture criterion for structures with sharp notches. Engineering Fracture Mechanics 47, 673–681.

    Google Scholar 

  • Strandberg, M. (1999). A numerical study of the elastic stress field arising from sharp and blunt V-notches in a SENT-specimen. International Journal of Fracture 100, 329–342.

    Article  Google Scholar 

  • Strandberg, M. (2002). Fracture at V-notches with contained plasticity. Engineering Fracture Mechanics 69, 403

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, F., Elices, M. A fracture criterion for blunted V-notched samples. International Journal of Fracture 127, 239–264 (2004). https://doi.org/10.1023/B:FRAC.0000036832.29429.21

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FRAC.0000036832.29429.21

Navigation