Skip to main content
Log in

Drosophila Melanogaster, Drosophila Simulans: so Similar yet so Different

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

During the last two decades, the two cosmopolitan species Drosophila melanogaster and Drosophila simulans have been compared with regard to numerous characteristics, ranging from their geographic distribution and ecology to their DNA polymorphism. Various traits have been compared, including morphology, physiology, sexual behavior, allozymes and other proteins, chromosomal inversions, mitochondrial and nuclear DNA, transposable elements, wolbachia etc. Such comparisons reveal similarities and differences between the two species, depending on the trait considered. In most cases, the between-population variability of D. simulans is lower than that of D. melanogaster, but the two species exhibit similar levels of within-population variability. One of the main exceptions is the nucleotide polymorphism of several nuclear regions. Although several hypotheses have been proposed to explain these observations, the evolutionary dynamics of these two species are far from being understood. How have two species sharing a common ancestor in the recent past accumulated so many differences? A brief history of comparisons of the two species, from the first in 1919 by A.H. Sturtevant, and a summary of the hypotheses proposed to explain the similarities and the differences between these species are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allemand, R., 1982. Physiological tolerance of Drosophila simulans to dark environment: A comparison with Drosophila melanogaster. J. Insect Physiol. 28: 767–772.

    Google Scholar 

  • Aquadro, C.F., 1992. Why is the genome variable? Insights from Drosophila. Trends Genet. 8: 355–362.

    Google Scholar 

  • Aquadro, C.F., K.M. Lado & W.A. Noon, 1988. The rosy region of Drosophila melanogaster and Drosophila simulans. I. Contrasting levels of naturally occurring DNA restriction map variation and divergence. 119: 875–888.

    Google Scholar 

  • Ashburner, M., 1989. Drosophila: A Laboratory Handbook and Manual. 2 Vol. 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Baba-Aissa, F., M. Solignac, N. Dennebouy & J.R. David, 1988. Mitochondrial DNA variability in Drosophila simulans: quasi absence of polymorphism within each of the three cytoplasmic races. Heredity 61: 419–426.

    Google Scholar 

  • Ballard, J.W., 2000. Comparative genomics of mitochondrial DNA in Drosophila simulans. J. Mol. Evol. 51: 64–75.

    Google Scholar 

  • Barbash, D.A., J. Roote & M. Ashburner, 2000. The Drosophila melanogaster Hybrid male rescue gene causes inviability in male and female species hybrids. Genetics 154: 1747–1771.

    Google Scholar 

  • Biemont, C., C. Vieira, N. Borie & D. Lepetit, 1999. Transposable elements and genome evolution: the case of Drosophila simulans. Genetica 107: 113–120.

    Google Scholar 

  • Bonnier, G., 1924. Contribution to the knowledge of intra-and interspecific relationships in Drosophila. Acta Zool. 5: 1–122.

    Google Scholar 

  • Capy, P., J.R. David & A. Robertson, 1988. Thoracic trident pigmentation in natural populations of Drosophila simulans: a comparison with Drosophila melanogaster. Heredity 61: 263–268.

    Google Scholar 

  • Capy, P., E. Pla & J.R. David, 1993. Phenotypic and genetic variability of morphometrical traits in natural populations of Drosophila melanogaster and D. simulans. I. Geographic variations. 25: 517–536.

    Google Scholar 

  • Capy, P., E. Pla & J.R. David, 1994. Phenotypic and genetic variability of morphometrical traits in natural populations of Drosophila melanogaster and D. simulans. II. Within-population variability. Genet. Sel. Evol. 26: 15–28.

    Google Scholar 

  • Castle, W.E., 1906. Inbreeding, cross-breeding and sterility in Drosophila. Science 23: 153.

    Google Scholar 

  • Choudhary, M. & R.S. Singh, 1987. A comprehensive study of genic variation in natural populations of Drosophila melanogaster. III. Variations in genetic structure and their causes between Drosophila melanogaster and its sibling species Drosophila simulans. 117: 697–710.

    Google Scholar 

  • David, J.R. & C. Bocquet, 1975. Similarities and differences in latitudinal adaptation of two Drosophila sibling species. Nature 257: 588–590.

    Google Scholar 

  • David, J.R. & P. Capy, 1988. Genetic variation of Drosophila melanogaster natural populations. Trends Genet. 4: 106–111.

    Google Scholar 

  • David, J.R. & L. Tsacas, 1983. L'evolution des Drosophilides: l'oeil du paléontologiste et l'oeil du biologiste généticien. Colloq. Int. Cent. Natn. Rech. Scient. 330: 249–257.

    Google Scholar 

  • David, J.R., R. Allemand, J. van Herrewege & Y. Cohet, 1983. Ecophysiology: Abiotic Factors. Ashburner, Carson, Thompson, 1981-1986 d: 105–170.

    Google Scholar 

  • Dowsett, A.P. & M.W. Young, 1982. Differing levels of dispersed repetitive DNA among closely related species of Drosophila. Proc. Natl. Acad. Sci. USA 79: 4570–4574.

    Google Scholar 

  • Ephrussi, B., 1925. Sur le chondriome ovarien des Drosophila melanogaster et simulans. C. R. Seanc. Soc. Biol., Paris 92: 778–780.

    Google Scholar 

  • Harris, H., 1966. Enzyme polymorphism in Man. Proc. Roy. Soc. Lond. B 164: 298–316.

    Google Scholar 

  • Hollocher, H. & C.I. Wu, 1996. The genetics of reproductive isolation in the Drosophila simulans clade: X v.s. autosomal effects and male v.s. female effects. Genetics 143: 1243–1255.

    Google Scholar 

  • Hutter, P. & M. Ashburner, 1987. Genetic rescue of inviable hybrids between Drosophila melanogaster and its sibling species. Nature 327: 331–333.

    Google Scholar 

  • Hyytia, P., P. Capy, J.R. David & R.S. Singh, 1985. Enzymatic and quantitative variation in European and African populations of Drosophila simulans. Heredity 54: 209–217.

    Google Scholar 

  • Inoue, Y., 1988. Chromosomal mutation in Drosophila melanogaster and Drosophila simulans. Mutat. Res. 197: 85–92.

    Google Scholar 

  • Jallon, J.M. & J.R. David, 1987. Variations in cuticular hydrocarbons among the eight species of the Drosophila melanogaster subgroup. Evolution 41: 294–302.

    Google Scholar 

  • Kawanishi, M. & T.K. Watanabe, 1981. Genes affecting courtship song and mating preference in Drosophila melanogaster, Drosophila simulans and their hybrids. Evolution 35: 1128–1133.

    Google Scholar 

  • Kerkis, J.J., 1933. Development of gonads in hybrids between Drosophila melanogaster and Drosophila simulans. J. Exp. Zool. 66: 477–509.

    Google Scholar 

  • Kerkis, J.J., 1936. Chromosome conjugation in hybrids between Drosophila melanogaster and Drosophila simulans. Am. Nat. 70: 81–86.

    Google Scholar 

  • Lachaise, D., M.L. Cariou, J.R. David, F. Lemeunier, L. Tsacas & M. Ashburner, 1988. Historical biogeography of the Drosophila melanogaster species subgroup. Evol. Biol. 22: 159–225.

    Google Scholar 

  • Lamb, C.G., 1914. The Percy Sladen Trust expedition to the Indian Ocean in 1905. XV. Diptera: Heteroneuridae, Ortalidae, Trypetidae, Sepsidae, Micropezidae, Drosophilidae, Geomyzidae, Milichidae. 16: 307–372.

    Google Scholar 

  • Lewontin, R.C. & J.L. Hubby, 1966. A molecular approach to the study of genic heterozygosity in natural populations of Drosophila subobscura. Genetics 54: 595–609.

    Google Scholar 

  • Meigen, J.W., 1830. Systematische Beschreibung der bekannten europaischen zweiflugeligen Insekten. Schulze. Morgan, T.H., 1909. Chance on purpose in the origin and evolution of adaptation. Science 31: 201–210.

    Google Scholar 

  • Morgan, T.H., 1910. Sex limited inheritance in Drosophila. Science 32: 120–122.

    Google Scholar 

  • Morgan, T.H., 1911. The origin of five mutations in eye-color in Drosophila and their modes of inheritance. Science 33: 534–537.

    Google Scholar 

  • Morgan, T.H., 1912. The explanation of a new sex-ratio in Drosophila. Science 36: 718–719.

    Google Scholar 

  • Muller, H.J. & G. Pontecorvo, 1942. Recessive genes causing interspecific sterility and other disharmonies between Drosophila melanogaster and simulans. Genetics 27: 157.

    Google Scholar 

  • Nurminsky, D.I., M.V. Nurminskaya, D. De Aguiar & D.L. Hartl, 1998. Selective sweep of a newly evolved sperm-specific gene in Drosophila. Nature 396: 572–575.

    Google Scholar 

  • Orr, H.A. & S. Irving, 2000. Genetic Analysis of the Hybrid male rescue Locus of Drosophila. Genetics 155: 225–231.

    Google Scholar 

  • Parsons, P.A., 1987. Evolutionary rates under environmental stress. Evol. Biol. 21: 311–347.

    Google Scholar 

  • Patau, K., 1935. Chromosomenmorphologie bei Drosophila melanogaster und Drosophila simulans und ihre genetische Bedeutung. Naturwissenschaften 23: 537–543.

    Google Scholar 

  • Patterson, J.T. & W.S. Stone, 1952. Evolution in the Genus Drosophila. Macmillan, New York.

    Google Scholar 

  • Provine, W.B., 1991. Alfred Henry Sturtevant and crosses between Drosophila melanogaster and Drosophila simulans. Genetics 129: 1–5.

    Google Scholar 

  • Rouault, J. & J.R. David, 1982. Evolutionary biology of Drosophila melanogaster and Drosophila simulans: a behavioural divergence in microhabitat selection. Acta Oecol., Oecol. Gen. 3: 331–338.

    Google Scholar 

  • Rutherford, S.L. & S. Lindquist, 1998. Hsp90 as a capacitor for morphological evolution. Nature 396: 336–342.

    Google Scholar 

  • Satta, Y. & N. Takahata, 1990. Evolution of Drosophila mitochondrial DNA and the history of the melanogaster subgroup. Proc. Natl. Acad. Sci. USA 87: 9558–9562.

    Google Scholar 

  • Sawamura, K., 2000. Genetics of hybrid inviability and sterility in Drosophila: the Drosophila melanogaster-Drosophila simulans case. Plant Species Biol. 15: 237–247.

    Google Scholar 

  • Sawamura, K. & M. Yamamoto, 1993. Cytogenetical localization of Zygotic hybrid rescue (Zhr), a Drosophila melanogaster gene that rescues interspecific hybrids from embryonic lethality. Mol. Gen. Genet. 239: 441–449.

    Google Scholar 

  • Sawamura, K., A.W. Davis & C.I. Wu, 2000. Genetic analysis of speciation by means of introgression into Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97: 2652–2655.

    Google Scholar 

  • Singh, R.S. & A.D. Long, 1992. Geographic variation in Drosophila: from molecules to morphology and back. TREE 7: 340–345.

    Google Scholar 

  • Singh, R.S., M. Choudhary & J.R. David, 1987. Contrasting patterns of geographic variation in the cosmopolitan sibling species Drosophila melanogaster and Drosophila simulans. Biochem. Genet. 25: 27–40.

    Google Scholar 

  • Sturtevant, A.H., 1919. A new species closely resembling to Drosophila melanogaster. Psyche 26: 488–500.

    Google Scholar 

  • Sturtevant, A.H., 1920. Genetic studies on Drosophila simulans. I. Introduction. Hybrids with Drosophila melanogaster. Genetics 5: 488–500.

    Google Scholar 

  • Sturtevant, A.H., 1921a. Genetic studies on Drosophila simulans. II. Sex-linked group of genes. Genetics 6: 43–64.

    Google Scholar 

  • Sturtevant, A.H., 1921b. Genetic studies on Drosophila simulans. III. Autosomal genes. General Discussion. Genetics 6: 179–207.

    Google Scholar 

  • Sturtevant, A.H., 1921c. A case of rearrangement of genes in Drosophila. Proc. Natl. Acad. Sci. USA 7: 235–237.

    Google Scholar 

  • Sturtevant, A.H., 1929. Contributions to the genetics of Drosophila simulans and Drosophila melanogaster. I. The genetics of Drosophila simulans. Publs Carnegie Instn. 399: 1–62.

    Google Scholar 

  • Tantawy, A.O., 1965. Studies on natural populations of Drosophila. III. Morphological and genetic differences of wing length in Drosophila melanogaster and D. simulans in relation to season. Evolution 18: 560–570.

    Google Scholar 

  • Tantawy, A.O. & G.S. Mallah, 1961. Studies on natural populations of Drosophila. I. Heat resistance and geographical variation in Drosophila melanogaster and D. simulans. Evolution 15: 1–14.

    Google Scholar 

  • Tantawy, A.O. & F.A. Rakha, 1964. Studies on natural populations of Drosophila. IV. Genetic variances of and correlations between four characters in D. melanogaster and D. simulans. Genetics 50: 1349–1355.

    Google Scholar 

  • Tantawy, A.O. & M.H. Soliman, 1967. Studies on natural populations of Drosophila. VI. Competition between Drosophila melanogaster and Drosophila simulans. Evolution 21: 34–40.

    Google Scholar 

  • Tantawy, A.O., G.S.Mallah & H.R. Tewfik, 1964. Studies on natural populations of Drosophila. II. Heritability and response to selection for wing length in Drosophila melanogaster and Drosophila simulans at different temperatures. Genetics 49: 935–948.

    Google Scholar 

  • Tsacas, L. & J.R. David, 1983. L'homme et la dispersion des drosophilides. C.R. Soc. Biogéogr. 59: 423–432.

    Google Scholar 

  • Vieira, C., C. Nardon, C. Arpin, D. Lepetit & C. Biémont, 2002. Evolution of genome size in Drosophila. Is the invader's genome being invaded by transposable elements? Mol. Biol. Evol. 19: 1154–1161.

    Google Scholar 

  • Watada, M., S. Ohba & Y.N. Tobari, 1986. Genetic differentiation in Japanese populations of Drosophila simulans and Drosophila melanogaster. II. Morphological variation. 61: 469–480.

    Google Scholar 

  • Watanabe, T.K. & M. Kawanishi, 1976. Colonization of Drosophila simulans in Japan. Proc. Jpn Acad. 52: 191–194.

    Google Scholar 

  • Woodruff, R.C. & M. Ashburner, 1978. The frequency of X-ray-induced chromosome breakage in the sibling species Drosophila melanogaster and Drosophila simulans. Am. Nat. 112: 456–459.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capy, P., Gibert, P. Drosophila Melanogaster, Drosophila Simulans: so Similar yet so Different. Genetica 120, 5–15 (2004). https://doi.org/10.1023/B:GENE.0000017626.41548.97

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GENE.0000017626.41548.97

Navigation