Skip to main content
Log in

Historicity and the Population Genetics of Drosophila Melanogaster and D. Simulans

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

We summarize data showing that there is population structure in African populations of Drosophila from the melanogaster-simulans complex. In D. melanogaster, population structuring is found at individual loci, but is obscured by population structuring for large inversions that simultaneously affect several loci. In D. simulans, molecular polymorphism at the X-linked vermilion locus suggests that different groups of populations have been geographically isolated for some time. Invading populations are probably derived from different areas in Africa. European populations originate from an east African population that was probably not at a demographic equilibrium. The origin of the Antilles population is apparently different and is as yet unknown. In south-western France, populations from these two species undergo different population structuring at the scale of a few kilometres: D. melanogaster makes up a large panmictic population, whereas D. simulans forms a metapopulation that is divided into smaller demes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfonso, J.M., M. Hernandez, G. Padron & A.M. Gonzalez, 1985. Gametic non random association in north-west African populations of Drosophila melanogaster. Genetica 67: 3–11.

    Google Scholar 

  • Andolfatto, P., 2001. Contrasting patterns of X-linked and autosomal nucleotide variation in Drosophila melanogaster and Drosophila simulans. Mol. Biol. Evol. 18(3): 279–290.

    Google Scholar 

  • Andolfatto, P., J. Wall & M. Kreitman, 1999. Unusual haplotype structure at the proximal breakpoint of In(2L)t in a natural population of Drosophila melanogaster. Genetics 153: 1297–1311.

    Google Scholar 

  • Begun, D.J. & C.F. Aquadro, 1993. African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature 365: 548–550.

    Google Scholar 

  • Bénassi, V. & M. Veuille, 1995. Comparative population structuring of molecular and allozyme variation of Drosophila melanogaster Adh between Europe, West Africa and East Africa. Genet. Res. Camb. 65: 95–103.

    Google Scholar 

  • Bénassi, V., S. Aulard, S. Mazeau & M. Veuille, 1993. Molecular variation at the Alcohol dehydrogenase and the P6 loci in Drosophila melanogaster from West-Africa, and its relation to inversion polymorphism. Genetics 134: 789–799.

    Google Scholar 

  • Boulétreau-Merle, J., 1992. Two paths for geographical expansion, in Advances in Regulation of Insect Reproduction, edited by B. Bennettovà, I. Gelbic & T. Soldàn. Czech Acad. Sci.

  • Capy, P., M. Veuille, M. Paillette, J.-M. Jallon, J. Vouidibio & J.R. David, 2000. Habitat races and sexual selection in Drosophila melanogaster: a step towards speciation in Brazzaville? Heredity 84: 468–475.

    Google Scholar 

  • Cariou, M.-L., M. Solignac, M. Monnerot & J.R. David, 1990. Low allozyme and mtDNA variability in the island endemic species Drosophila sechellia (D. melanogaster complex). Experientia 46: 101–104.

    Google Scholar 

  • Choudhary, M. & R. Singh, 1987. A comprehensive study of genetic variation in natural populations of Drosophila melanogaster. III. Variations in genetic structure and their causes between Drosophila melanogaster and its sibling species Drosophila simulans. Genetics 117: 697–710.

    Google Scholar 

  • Cobb, M., M. Huet, D. Lachaise & M. Veuille, 2000. Fragmented forests, evolving flies: Molecular variation in African populations of Drosophila teissieri. Mol. Ecol. 9: 1591–1987.

    Google Scholar 

  • Depaulis, F. & M. Veuille, 1998. Neutrality tests based on the distribution of haplotypes under an infinite site model. Mol. Biol. Evol. 15: 1788–1790.

    Google Scholar 

  • Depaulis, F., L. Brazier & M. Veuille, 1999. Selective sweep at the Drosophila melanogaster Suppressor of Hairless locus and its association with the In(2L)t inversion polymorphism. Genetics 152: 1017–1024.

    Google Scholar 

  • Depaulis, F., S. Mousset & M. Veuille, 2001. Haplotype tests using coalescent simulations conditional on the number of segregating sites. Mol. Biol. Evol. 18: 1136–1138.

    Google Scholar 

  • Depaulis, F., S. Mousset & M. Veuille, 2002. Detecting selective sweeps with haplotype tests, in Selective Sweeps, edited by Nurminsky. Landes Bioscience.

  • Depaulis, F., S. Mousset & M. Veuille, Power of neutrality tests to detect bottlenecks and hitchhiking. J. Mol. Evol. (in press).

  • Dobzhansky, Th., 1965. Wild and domestic species of Drosophila, pp. 533–547 in The Genetics of Colonizing Species, edited by H.G. Baker & G. Leddyard Stebbins. Academic Press, New York and London.

    Google Scholar 

  • Dobzhansky, Th. & S. Wright, 1941. Relations between mutation rate and accumulation of lethals in populations of Drosophila pseudoobscura. Genetics 26: 23–51.

    Google Scholar 

  • Eanes, W.F., C. Wesley & B. Charlesworth, 1992. Accumulation of P elements in minority inversions in natural populations of Drosophila melanogaster. Genet Res. 59: 1–9.

    Google Scholar 

  • Ferveur, J.F., M. Cobb, H. Boukella & J.M. Jallon, 1996. Worldwide variation in Drosophila melanogaster sex pheromone: behavioural effects, genetic bases and potential evolutionary consequences. Genetica 97: 73–80.

    Google Scholar 

  • Hamblin, M.T. & M. Veuille, 1999. Population structure among African and derived populations of D. simulans: evidence for ancient subdivision and recent admixture. Genetics 153: 305–317.

    Google Scholar 

  • Hudson, R.R. & N.L. Kaplan, 1985. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111: 147–164.

    Google Scholar 

  • Hutter, C.M., M.D. Schug & C.F. Aquadro, 1998. Microsatellite variation in Drosophila melanogaster and Drosophila simulans: a reciprocal test of the ascertainment bias hypothesis. Mol. Biol. Evol. 15: 1620–1636.

    Google Scholar 

  • Inoue, Y. & T.K. Watanabe, 1980. Inversion polymorphism in some African, New Guinean and Philippine populations of D. melanogaster. Ann. Rep. Natl. Inst. Genet. Jpn. 30: 88.

    Google Scholar 

  • Kauer, M., B. Zangerl, D. Dieringer & C. Schlötterer, 2002. Chromosomal patterns of microsatellite variability contrast sharply in African and non-African populations of Drosophila melanogaster. Genetics 160: 247–256.

    Google Scholar 

  • Kliman, R.M., P. Andolfatto, J.A. Coyne, F. Depaulis, M. Kreitman, A.J. Berry, J. McCarter, J. Wakeley & J. Hey, 2000. The population genetics of the origin and divergence of the Drosophila simulans complex species. Genetics 156: 1913–1931.

    Google Scholar 

  • Kreitman, M., 1983. Nucleotide polymorphism at the alcohol dehydrogenase gene region of Drosophila melanogaster. Nature 304: 412–417.

    Google Scholar 

  • Kreitman, M. & R. Hudson, 1991. Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics 127: 565–582.

    Google Scholar 

  • Kruglyak, S., R.T. Durrett, M.D. Schug & C.F. Aquadro, 1998. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc. Natl. Acad. Sci. USA 95(18): 10774–10778.

    Google Scholar 

  • Lachaise, D., F. Lemeunier & M. Veuille, 1981. Clinal variation in male genitalia in Drosophila teissieri Tsacas. Am. Nat. 117: 600–608.

    Google Scholar 

  • Lachaise, D., M.-L. Cariou, J.R. David, F. Lemeunier & L. Tsacas, 1988. Historical biogeography of the Drosophila melanogaster species subgroup. Evol. Biol. 22: 159–225.

    Google Scholar 

  • Lemeunier, F. & S. Aulard, 1992. Inversion polymorphism in Drosophila melanogaster, pp. 339–405 in Drosophila Inversion Polymorphism, edited by C.B. Krimbas & J.R. Powell. CRC Press, Cleveland.

    Google Scholar 

  • Lemeunier, F., S. Aulard, V. Bénassi & M. Veuille, 1994. Scientific correspondence: fruitfly origins. Nature 371: 25.

    Google Scholar 

  • Lewontin, R.C., J.A. Moore, W.B. Provine & B. Wallace, 1981. Dobzhansky's Genetics of Natural Populations, I-XLIII. Columbia University Press, New York.

    Google Scholar 

  • Luyten, I., 1982. Variation intraspécifique et interspécifique des hydrocarbures cuticulaires chez Drosophila simulans et des espèces affines. C. R. Acad. Sci. Paris, Sci. Vie. 295: 733–736.

    Google Scholar 

  • Michalakis, Y. & M. Veuille, 1996. Length variation of CAG/CAA trinucleotide repeats in natural populations of Drosophila melanogaster and its relation to the recombination rate. Genetics 143: 1713–1725.

    Google Scholar 

  • Mousset, S. & N. Derome, Molecular polymorphism in Drosophila melanogaster and D. simulans: what have we learnt from recent studies? Genetica (in press).

  • Mousset, S., L. Brazier, M.-L. Cariou, F. Chartois, F. Depaulis & M. Veuille, Evidence of multiple selective sweep events in the Drosophila melanogaster genome. Genetics (in press).

  • Nei, M., 1975. Molecular Population Genetics. North-Holland, Amsterdam, Oxford.

    Google Scholar 

  • Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Newfeld, S.J., A.T. Schmid and B. Yedvobnick, 1993. Homopolymer length variation in the Drosophila gene mastermind. J.Mol. Evol. 37: 483–495.

    Google Scholar 

  • Newfeld, S.J., H. Tachida & B. Yedvobnick, 1994. Drive-selection equilibrium: homopolymer evolution in the Drosophila gene mastermind. J. Mol. Evol. 38: 637–641.

    Google Scholar 

  • Petrov, D.A., T.A. Sangster, J.S. Johnston, D.L. Hartl & K.L. Shaw, 2000. Evidence for DNA loss as a determinant of genome size. Science 287: 1060–1062.

    Google Scholar 

  • Raymond, M. & F. Rousset, 1995. Genepop (version 1.2): population genetics software for exact tests and ecumenism. J. Hered. 86: 248–249.

    Google Scholar 

  • Sawyer, S.A. & D.L. Hartl, 1992. Population genetics of polymorphism and divergence. Genetics 132: 1161–1176.

    Google Scholar 

  • Schlötterer, C., R. Ritter, B. Harr & G. Brem, 1998. High mutation rate of a long microsatellite allele in Drosophila melanogaster provides evidence for allele-specific mutation rates. Mol. Biol. Evol. 15(10): 1269–1274.

    Google Scholar 

  • Singh, R., 1989. Population genetics and evolution of species related to Drosophila melanogaster. Ann. Rev. Genet. 23: 425–453.

    Google Scholar 

  • Veuille, M., V. Bénassi, S. Aulard & F. Depaulis, 1998. Allele-specific population structure of Drosophila melanogaster Alcohol dehydrogenase at the molecular level. Genetics 149: 971–981.

    Google Scholar 

  • Vouidibio, J., P. Capy, D. Defaye, E. Pla, J. Sandrin, A. Csink & J.R. David, 1989. Short-range genetic structure of Drosophila melanogaster populations in an Afrotropical urban area and its significance. Proc. Natl. Acad. Sci. USA 86: 8442–8446.

    Google Scholar 

  • Waples, R.S., 1989. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121: 379–392.

    Google Scholar 

  • Watanabe, T.K., Y. Inoue & M. Watada, 1984. Adaptation of Drosophila simulans in Japan. Jpn. J. Genet. 59: 225–235.

    Google Scholar 

  • Wright, S., 1951. The genetical structure of populations. Ann. Eugen. 15: 323–354.

    Google Scholar 

  • Zohary, D. & M. Hopf, 2000. Domestication of Plants in the Old World. Oxford University Press, Oxford, 3rd edn.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veuille, M., Baudry, E., Cobb, M. et al. Historicity and the Population Genetics of Drosophila Melanogaster and D. Simulans . Genetica 120, 61–70 (2004). https://doi.org/10.1023/B:GENE.0000017630.69020.32

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GENE.0000017630.69020.32

Navigation