Skip to main content
Log in

The Genetic Basis of Resistance to Diazinon in Natural Populations of Drosophila melanogaster

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Isofemale strains of Drosophila melanogaster were established from single inseminated females collected from populations along the east coast of Australia. Strains were tested for resistance to the organophosphorus insecticide diazinon at larval and/or adult stages of the life cycle. Considerable phenotypic variation was observed within and between population samples but there was no association between collection site of a sample and resistance status. Adult and larval resistance levels were uncorrelated. Resistance levels in adults were low (2-fold) and polygenically based. Larval resistance levels, due to single genes (or gene complexes) on chromosomes II and III, were significant (15-fold). Evidence indicates that the gene on chromosome II is Cyp6g1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M.D. et al., 2000. The genome sequence of Drosophila melanogaster. Science 287 (5461): 2185–2195.

    Google Scholar 

  • Arnold, J.T.A. & M.J. Whitten, 1976. The genetic basis of organo-phosphorus resistance in the Australian sheep blowfly, Lucilia cuprina Weidemann (Diptera: Calliphoridae). Bull. Entomol. Res. 66: 561–568.

    Google Scholar 

  • Brown, A.W.A. & R. Pal, 1971. Insecticide Resistance in Arthropods. WHO, Geneva.

    Google Scholar 

  • Crow, J.F., 1957. Genetics of insecticide resistance to chemicals. Ann. Rev. Entomol. 2: 227–246.

    Google Scholar 

  • Daborn, P.J., J.A. McKenzie & P. Batterham, 2000. A genetic analysis of cyromazine resistance in Drosophila melanogaster (Diptera: Drosophilidae). J. Econ. Entomol. 93: 911–919.

    Google Scholar 

  • Daborn, P., S. Boundy, J. Yen, B. Pittendrigh, R. ffrench-Constant, 2001. DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Mol. Genet. Genom. 266: 556–563.

    Google Scholar 

  • Daborn, P.J., J.L. Yen, M.R. Bogwitz, G. Le Goff, E. Feil, S. Jeffers, N. Tijet, T. Perry, D. Heckel, P. Batterham, R. Feyereisen, T.G. Wilson & R.H. ffrench-Constant, 2002. A single P450 allele associated with resistance in Drosophila. Science 297: 2253–2256.

    Google Scholar 

  • Daly, J.C., J.H. Fisk & N.W. Forrester, 1988. Selective mortality in field trials between strains of Heliothis armigera (Lepidoptera: Noctuidae) resistant and susceptible to pyrethroid: functional dominance of resistance and age class. J. Econ. Entomol. 81: 1000–1007.

    Google Scholar 

  • Denholm, I., J.A. Pickett & A.L. Devonshire (eds), 1999. Insecticide Resistance: from Mechanisms to Management. CAB International, Wallingford.

    Google Scholar 

  • ffrench-Constant, R.H., R.T. Roush, D. Mortlock & E.P. Dively, 1990. Isolation of dieldrin resistance from field populations of Drosophila melanogaster (Diptera: Drosophilidae). J. Econ. Entomol. 83: 1733–1737.

    Google Scholar 

  • ffrench-Constant, R.H., N. Anthony, K. Aronstein, T. Rocheleau & G. Stilwell, 2000. Cyclodiene insecticide resistance: from molecular to population genetics. Ann. Rev. Entomol. 45: 449–466.

    Google Scholar 

  • Fournier, D. & A. Mutero, 1994. Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comp. Biochem. Physiol. 108: 9–31.

    Google Scholar 

  • Georghiou, G.P., 1986. The magnitude of the resistance problem, pp. 14–43 in Pesticide Resistance: Strategies and Tactics for Management, edited by National Academy of Sciences. National Academy Press, Washington.

    Google Scholar 

  • Glenn, D.C., A.A. Hoffmann & G. McDonald, 1994. Resistance to pyrethroids in Helicoverpa armigera (Lepidoptera: Noctuidae) from Corn: adult resistance, larval resistance and fitness effects. J. Econ. Entomol. 87: 1165–1171.

    Google Scholar 

  • Groeters, F.R. & B.E. Tabashnik, 2000. Roles of selection intensity, major genes, and minor genes in evolution of insecticide resistance. J. Econ. Entomol. 93: 1580–1587.

    Google Scholar 

  • Heather, N.W., 1986. Sex-linked resistance to pyrethroids in Sitophilus oryzae (L.) (Coleoptera: Curculionidae). J. Stored Prod. Res. 22: 15–20.

    Google Scholar 

  • Kikkawa, H., 1961. Ann. Rep. Sci. Works Fac. Sci. Osaka Univ. 9: 1–20.

    Google Scholar 

  • Lande, R., 1983. The response to selection on major and minor mutations affecting a metrical trait. Heredity 50: 47–65.

    Google Scholar 

  • Lindsley, D.L. & G.G. Zimm, 1992. The Genome of Drosophila. Academic Press, San Diego.

    Google Scholar 

  • Macnair, M.R., 1991. Why the evolution of resistance to anthropogenic toxins normally involves major gene changes: the limits to natural selection. Genetics 84: 213–219.

    Google Scholar 

  • Mallet, J., 1989. The evolution of insecticide resistance: have the insects won? Trends Ecol. Evol. 4: 336–340.

    Google Scholar 

  • Margham, J.P. & R.J. Wood, 1976. The effect of larval selection on adult resistance to DDT in two strains of the mosquito Aedes aegypti (L). Heredity 36: 143–145.

    Google Scholar 

  • McKenzie, J.A. 1996. Ecological and Evolutionary Aspects of Insecticide Resistance. R.G. Landes/Academic Press, Austin.

    Google Scholar 

  • McKenzie, J.A., 2000. The character or the variation: the genetic analysis of the insecticide-resistance phenotype. Bull. Entomol. Res. 90: 3–7.

    Google Scholar 

  • McKenzie, J.A. & P. Batterham, 1994. The genetic, molecular and phenotypic consequences of selection for insecticide resistance. Trends Ecol. Evol. 9: 166–169.

    Google Scholar 

  • McKenzie, J.A. & P.A. Parsons, 1972. Alcohol tolerance: an ecological paramater in the relative success of Drosophila melanogaster and Drosophila simulans. Oecologia 10: 373–388.

    Google Scholar 

  • Miyo, T., H, Takamori, Y. Kono, and Y. Oguma, 2001. Genetic variation and correlations among responses to five insecticides within natural populations of Drosophila melanogaster (Diptera: Drosophilidae). J. Econ. Entomol. 94: 223–232.

    Google Scholar 

  • Miyo, T., Y. Kono & Y. Oguma, 2002. Genetic basis of crossresistance to three organophosphate insecticides in Drosophila melanogaster (Diptera: Drosophilidae). J. Econ. Entomol. 95: 871–877.

    Google Scholar 

  • Morton, R.A., 1993. Evolution of Drosophila insecticide resistance. Genome 36: 1–7.

    Google Scholar 

  • Newcomb, R.D., P.M. Campbell, D.L. Ollis, E. Cheah, R.J. Russell & J.G. Oakeshott, 1997. Insecticide resistance by a point mutation that converts a carboxylesterase to a phosphatase. Proc. Natl. Acad. Sci. USA 94: 7464–7468.

    Google Scholar 

  • O'Hare, K. & G.M. Rubin, 1983. The structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34: 25–35.

    Google Scholar 

  • Oppenoorth, F.J., 1985. Biochemistry and genetics of insecticide resistance. pp. 731–773 in Comprehensive Insect Physiology Biochemistry and Pharmacology, Vol. 12, edited by G.A. Kerkut & L.I. Gilbert. Pergamon Press, Oxford.

    Google Scholar 

  • Orr, H.A. & J.A. Coyne, 1992. The genetics of adaptation: a reassessment. Am. Nat. 140: 725–742.

    Google Scholar 

  • Parsons, P.A., 1980. Isofemale strains and evolutionary strategies in natural populations. Evol. Biol. 13: 175–217.

    Google Scholar 

  • Pittendrigh, B., R. Reenan, R.H. ffrench-Constant & B. Ganetsky, 1997. Point mutations in the Drosophila sodium channel gene para associated with resistance to DDT and pyrethroid insecticides. Mol. Gen. Genet. 256: 602–610.

    Google Scholar 

  • Pyke, F.M., 2000. The genetic basis of diazinon resistance in Drosophila melanogaster. PhD Thesis, University of Melbourne, Australia.

    Google Scholar 

  • Roush, R.T. & M.A. Hoy, 1981. Laboratory, glasshouse and field studies of artificially selected carboxyl resistance in Metaseuilus occidentalis. J. Econ. Entomol. 74: 142–147.

    Google Scholar 

  • Roush, R.T. & J.A. McKenzie, 1987. Ecological genetics of insecticide and acaricide resistance. Ann. Rev. Entomol. 32: 361–380.

    Google Scholar 

  • Roush, R.T. & B.E. Tabashnik (eds), 1990. Pesticide Resistance in Arthropods. Chapman & Hall, New York.

    Google Scholar 

  • Scott, J.G., 1999. Cytochrome P450 and insecticide resistance. Insect. Biochem. Molec. Biol. 29: 757–777.

    Google Scholar 

  • Scott, M., K. Diwell & J.A. McKenzie, 2000. Dieldrin resistance in Lucilia cuprina (the Australian sheep blowfly): chance, selection and response. Heredity 84: 599–604.

    Google Scholar 

  • Tabashnik, B.E., 1990. Modeling and evolution of resistance management tactics, pp. 153–182 in Pesticide Resistance in Arthropods, edited by R.T. Roush & B.E. Tabashnik. Chapman & Hall, New York.

    Google Scholar 

  • Taylor, M. & R. Feyereisen, 1996. Molecular biology and evolution of resistance to toxicants. Mol. Biol. Evol. 13: 719–734.

    Google Scholar 

  • Tijet, N., C. Helivig & R. Feyereisen, 2001. The cytochrome P450 gene superfamily in Drosophila melanogaster: annotation, intron-exon organization and phylogeny. Gene 262: 189–198.

    Google Scholar 

  • Wilson, T.G., 1988. Drosophila melanogaster (Diptera: Drosohilidae): a model insect for insecticide resistance studies. J. Econ. Entomol. 81: 22–27.

    Google Scholar 

  • Wilson, T.G., 2001. Resistance of Drosophila to toxins. Ann. Rev. Entomol. 46: 545–571.

    Google Scholar 

  • Wilson, T.G. & J.W. Cain, 1997. Resistance to the insecticides lufenuron and propoxur in natural populations of Drosophila melanogaster. J. Econ. Entomol. 90: 1131–1136.

    Google Scholar 

  • Wilson, T.G. & J.R. Cryan, 1996. High genetic variability for susceptibility to lufenuron, a chitin synthesis inhibitor insecticide, pp. 141–148 in Molecular Genetics and Ecology of Pesticide Resistance, edited by T. Brown. Ann Chem. Soc. Symp. 645, ACS, Washington.

    Google Scholar 

  • Windelspecht, M., R.C. Richmond & B.J. Cochrane, 1995. Malathion resistance levels in sympatric populations of Drosophila simulans (Diptera: Drosophilidae) and D. melanogaster differ by two orders of magnitude. J. Econ. Entomol. 88: 1138–1142.

    Google Scholar 

  • Windelspecht, M., R.C. Richmond & B.J. Cochrane, 1998. Survey of malathion resistance and avermectin susceptibility in field populations of Drosophila melanogaster (Diptera: Drosophilidae) and D. simulans. J. Econ. Entomol. 91: 1245–1252.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Batterham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyke, F.M., Bogwitz, M.R., Perry, T. et al. The Genetic Basis of Resistance to Diazinon in Natural Populations of Drosophila melanogaster . Genetica 121, 13–24 (2004). https://doi.org/10.1023/B:GENE.0000019920.71944.2b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GENE.0000019920.71944.2b

Navigation