Skip to main content
Log in

A Proposal to Measure Antimatter Gravity Using Ultracold Antihydrogen Atoms

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The gravitational acceleration of antimatter has never been measured directly. Antihydrogen atoms, being both stable and neutral, are an ideal system for investigating antimatter gravity. Ultralow temperatures in the 10–100 μK range are desirable for practical experiments. It is proposed to cool positive antihydrogen ions using laser-cooled ordinary ions. Ultracold neutral antihydrogen atoms might then be obtained by photodetachment. The gravitational acceleration can readily be determined from the time-of-flight between the photodetachment laser pulse and an annihilation detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nieto, M. M. and Goldman, T. (1991). Phys. Rep. 205, 221-281.

    Google Scholar 

  2. Nieto, M. M. and Goldman, T. (1992). Phys. Rep. 216, 343.

    Google Scholar 

  3. Darling, T. W., Rossi, F., Opat, G. I., and Moorhead, G. F. (1992). Rev. Mod. Phys. 64, 237-257.

    Google Scholar 

  4. Holzscheiter, M. H., Brown, R. E., Camp, J. B., Cornford, S., Darling, T., Dyer, P., Goldman, T., HÙibraten, S., Hosea, K., Hughes, R. J., Jarmie, N., Kenefick, R. A., King, N. S. P., Lizon, D. C., Nieto, M. M., Midzor, M. M., Parry, S. P., Rochet, J., Ristinen, R. A., Schauer, M. M., Schecker, J. A., and Witteborn, F. C. (1993). Nucl. Phys. A 558, 709c-718c.

    Google Scholar 

  5. Gabrielse, G., Khabbaz, A., Hall, D. S., Heimann, C., Kalinowsky, H., and Jhe, W. (1999). Phys. Rev. Lett. 82, 3198-3201.

    Google Scholar 

  6. Yamazaki, T., Morita, N., Hayano, R. S., Widmann, E., and Eades, J. (2002). Phys. Rep. 366, 183-329.

    Google Scholar 

  7. Bell, J. S. (1987). In Fundamental Symmetries, P. Bloch, P. Pavlopoulos, and R. Klapisch (Eds.), Plenum, New York.

    Google Scholar 

  8. Amoretti, M., Amsler, C., Bonomi, G., Bouchta, A., Bowe, P., Carraro, C., Cesar, C. L., Charlton, M., Collier, M. J. T., Doser, M., Filippini, V., Fine, K. S., Fontana, A., Fujiwara, M. C., Funakoshi, R., Genova, P., Hangst, J. S., Hayano, R. S., Holzscheiter, M. H., JÙrgensen, L. V. Lagomarsino, V., Landua, R., Lindel×f, D., Lodi Rizzini, E., MacrÍ, M., Madsen, N., Manuzio, G., Marchesotti, M., Montagna, P., Pruys, H., Regenfus, C., Riedler, P., Rochet, J., Rotondi, A., Rouleau, G., Testera, G., Variola, A., Watson, T. L., and van der Werf, D. P. (2002). Nature 419, 456-459.

    Google Scholar 

  9. Gabrielse, G., Bowden, N. S., Oxley, P., Speck, A., Storry, C. H., Tan, J. N., Wessels, M., Grzonka, D., Oelert, W., Schepers, G., Sefzcik, T., Walz, J., Pittner, H., HÅnsch, T. W., and Hessels, E. A. (2002). ATRAP Collaboration. Phys. Rev. Lett. 89, 213401-1-4.

    Google Scholar 

  10. Gabrielse, G., Bowden, N. S., Oxley, P., Speck, A., Storry, C. H., Tan, J. N., Wessels, M., Grzonka, D., Oelert, W., Schepers, G., Sefzick, T., Walz, J., Pittner, H., HÅnsch, T. W. and Hessels, E. A. (2002). ATRAP Collaboration. Phys. Rev. Lett. 89, 233401-1-4.

    Google Scholar 

  11. Kasevich, M. and Chu, S. (1992). Appl. Phys. B 54, 321-332.

    Google Scholar 

  12. Gabrielse, G. (1988). Hyperfine Interact. 44, 349-356.

    Google Scholar 

  13. Poggiani, R. (1997). Hyperfine Interact. 109, 367-372.

    Google Scholar 

  14. Phillips, T. J. (1997). Hyperfine Interact. 109, 357-365.

    Google Scholar 

  15. Phillips, W. D., Rolston, S. L., Lett, P. D., McIlrath, T., Vansteenkiste, N., and Westbrook, C. I. (1993). Hyperfine Interact. 76, 265-272.

    Google Scholar 

  16. Ertmer, W. and Wallis, H. (1988). Hyperfine Interact. 44, 319-334.

    Google Scholar 

  17. Lett, P. D., Gould, P. L., and Phillips, W. D. (1988). Hyperfine Interact. 44, 335-348.

    Google Scholar 

  18. Charlton, M., Eades, J., HorvÂth, D., Hughes, R. J., and Zimmermann, C. (1994). Phys. Rep. 241, 65-117.

    Google Scholar 

  19. Surko, C. M., Greaves, R. G., and Charlton, M. (1997). Hyperfine Interact. 109, 181-188.

    Google Scholar 

  20. Estrada, J., Roach, T., Tan, J. N., Yesley, P., and Gabrielse, G. (2000). Phys. Rev. Lett. 84, 859-862.

    Google Scholar 

  21. Maury, S. (1997). Hyperfine Interact. 109, 43-52.

    Google Scholar 

  22. Belochitskii, P., Eriksson, T., and Maury, S. (in press). Nucl. Instrum. Methods B.

  23. Gabrielse, G. (2001). Adv. At. Mol. Opt. Phys. 45, 1-39.

    Google Scholar 

  24. Gabrielse, G., Estrada, J., Tan, J. N., Yesley, P., Bowden, N. S., Oxley, P., Roach, T., Storry, C. H., Wessels, M., Tan, J., Grzonka, D., Oelert, W., Schepers, G., Sefzick, T., Breunlich, W. H., Cargnelli, M., Fuhrmann, H., King, R., Ursin, R., Zmeskal, J., Kalinowsky, H., Wesdorp, C., Walz, J., Eikema, K. S. E., and HÅnsch, T. W. (2001). Phys. Lett. B 507, 1-6.

    Google Scholar 

  25. Bluhm, R., KosteleckÞ, V. A., and Russel, N. (1999). Phys. Rev. Lett. 82, 2254-2257.

    Google Scholar 

  26. Niering, M., Holzwarth, R., Reichert, J., Pokasov, P., Th. Udem, Weitz, M., HÅnsch, T. W. Lemonde, P., Santarelli, G., Abgrall, M., Laurent, P., Salomon, C., and Clairon, A. (2000). Phys. Rev. Lett. 84, 5496-5499.

  27. Hughes, R. J. and Holzscheiter, M. H. (1992). J. Mod. Opt. 39, 263-278.

    Google Scholar 

  28. Bauch, A. and Weyers, S. (2002). Phys. Rev. D 65, 081101R-1-4.

    Google Scholar 

  29. Setija, I. D., Werij, H. G. C., Luiten, O. J., Reynolds, M. W., Hijmans, T. W., and Walraven, J. T. M. (1993). Phys. Rev. Lett. 70, 2257-2260.

    Google Scholar 

  30. Eikema, K. S. E., Walz, J., and HÅnsch T. W. (1999). Phys. Rev. Lett. 83, 3828-3831.

    Google Scholar 

  31. Eikema, K. S. E., Walz, J., and HÅnsch, T. W. (2001). Phys. Rev. Lett. 86, 5679-5682.

    Google Scholar 

  32. Masuhara, N., Doyle, J. M., Sandberg, J. C., Kleppner, D., and Greytak, T. J. (1988). Phys. Rev. Lett. 61, 935-938.

    Google Scholar 

  33. Walraven, J. T. M. (1993). Hyperfine Interact. 76, 205-220.

    Google Scholar 

  34. Massey, H. (1976). Negative Ions, 3rd Edition, Cambridge University Press, Cambdrige, London.

    Google Scholar 

  35. Smirnov, B. M. (1982). Negative Ions, McGraw-Hill, New York.

    Google Scholar 

  36. Andersen, T., Haugen, H. K., and Hotop, H. (1999). J. Phys. Chem. Ref. Data 28, 1511-1533.

    Google Scholar 

  37. Larson, D. J., Bergquist, J. C., Bollinger, J. J., Itano, W. M., and Wineland, D. J. (1986). Phys. Rev. Lett. 57, 70-73.

    Google Scholar 

  38. Newbury, A. S., Jelenković, B. M., Bollinger, J. J., and Wineland, D. J. (2000). Phys. Rev. A 62, 023405-1-10.

    Google Scholar 

  39. Jelenković, B. M., Bollinger, J. J., Newbury, A. B., Mitchell, T. B., and Itano, W. M. In New Directions in Antimatter Chemistry and Physics, C. M. Surko and F. A. Gianturco (Eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 1-20.

  40. Peik, E., Hollemann, G., and Walther, H. (1994). Phys. Rev. A 49, 402-408.

    Google Scholar 

  41. Lykke, K. R., Murray, K. K., and Lineberger, W. C. (1991). Phys. Rev. A 43, 6104-6107.

    Google Scholar 

  42. Harms, O., Zehnpfennig, M., Gomer, V., and Meschede, D. (1997). J. Phys. B 30, 3781-3787.

    Google Scholar 

  43. Mittleman, M. H. (1979). J. Phys. B 12, 1781-1787.

    Google Scholar 

  44. Hessels, E. A., Homan, D. M., and Cavagnero, M. J. (1998). Phys. Rev. A 57, 1668-1671.

    Google Scholar 

  45. Zalubas, R. and Corliss, C. H. (1974). J. Res. NBS 78A, 163-246.

    Google Scholar 

  46. KÅlber, W., Rink, J., Bekk, K., Faubel, W., G×ring, S. Meisel, G., Rebel, H., and Thompson, R. C. (1989). Z. Phys. A 334, 103-108.

    Google Scholar 

  47. Hall, J. L. and Siegel, M. W. (1968). J. Chem. Phys. 48, 943-945.

    Google Scholar 

  48. Lett, P. D., Watts, R. N., Westbrook, C. I., Phillips, W. D., Gould, P. L., and Metcalf, H. J. (1988). Phys. Rev. Lett. 61, 169-172.

    Google Scholar 

  49. Weiss, D. S., Riis, E., Shevy, Y., Ungar, P. J., and Chu, S. (1989) J. Opt. Soc. Am. B 6, 2072-2083.

    Google Scholar 

  50. Yavin, I., Weel, M., Andreyuk, A., and Kumarakrishnan, A. (2002). Am. J. Phys. 70, 149-152.

    Google Scholar 

  51. Li, G. Z., Poggiani, R., Testera, G., and Werth, G. (1991). Z. Phys. D 22, 375-382.

    Google Scholar 

  52. Tseng, C. H. and Gabrielse, G. (1993). Hyperfine Interact. 76, 381-386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walz, J., Hänsch, T.W. A Proposal to Measure Antimatter Gravity Using Ultracold Antihydrogen Atoms. General Relativity and Gravitation 36, 561–570 (2004). https://doi.org/10.1023/B:GERG.0000010730.93408.87

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GERG.0000010730.93408.87

Navigation