Skip to main content
Log in

Thermodynamic binding studies of galectin-1, -3 and -7

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The carbohydrate binding specificities of the galectin family of animal lectins has been the source of intense recent investigations. Isothermal titration microcalorimetry (ITC) provides direct determination of the thermodynamics of binding of carbohydrates to lectins, and has provided important insights into the fine carbohydrate binding specificities of a wide number of plant and animal lectins. Recent ITC studies have been performed with galectin-1, galectin-3 and galectin-7 and their interactions with sialylated and non-sialylated carbohydrates. The results show important differences in the specificities of these three galectins toward poly-N-acetyllactosamine epitopes found on the surface of cells. Published in 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barondes SH, Cooper DNW, Gitt MA, Leffler H, Galectins: structure and function of a large family of animal lectins, J Biol Chem 269, 20807-10 (1994).

    Google Scholar 

  2. Kasai K-i, Hirabayashi J, Galectins: A family of animal lectins that decipher glycocodes, J Biochem 119, 1-8 (1996).

    Google Scholar 

  3. Gabius H-J, Animal lectins, Eur J Biochem 243, 543-76 (1997).

    Google Scholar 

  4. Cooper DNW, Barondes SH, God must love galectins: He made so many of them, Glycobiology 9, 979-84 (1999).

    Google Scholar 

  5. Hirabayashi J, Arata Y, Kasai K-i, Galectins from the nematode caenorhabditis elegans and the genome project, Trends Glycosci Glycotech 9, 113-22 (1997).

    Google Scholar 

  6. Yang R-Y, Hsu DK, Yu L, J, N, Liu F-T, Cell cycle regulation by galectin-12, a new member of the galectin superfamily, J Biol Chem 276, 20252-60 (2001).

    Google Scholar 

  7. Gabius H-J, Biological information transfer beyond the genetic code: The sugar code, Naturwissenschaften 87, 108-21 (2000).

    Google Scholar 

  8. Kaltner H, Stierstorfer B, Animal lectins as cell adhesion molecules, Acta Anat (Basel) 161, 162-79 (1998).

    Google Scholar 

  9. Bourne Y, Bolgiano B, Liao D-l, Strecker G, Cantau P, Herzberg O, Feizi T, Cambillau C, Crosslinking of mammalian lectin (galactin-1) by complex biantennary saccharides, Nature Struc Biol 1, 863-70 (1994).

    Google Scholar 

  10. Liao D-I, Kapadia G, Ahmed H, Vatsa GR, Herzberg O, Structure of S-lectin, a developmentally regulated vertebrate β-galactosidebinding protein, Proc Natl Acad Sci (USA) 91, 1428-32 (1994).

    Google Scholar 

  11. Lobsanov YD, Gitt MA, Leffler H, Barondes SH, Rini JM, X-ray crystal structure of the human dimeric S-Lac lectin, L-14-II, in complex with lactose at 2.9-A resolution, J Biol Chem 268, 27034-8 (1993).

    Google Scholar 

  12. Leonidas Dd, Vatzaki EH, Vorum H, Celis JE, Madsen P, Acharya KR, Structural basis for the recognition of carbohydrates by human galectin-7, Biochemistry 37, 12930-40 (1998).

    Google Scholar 

  13. Leonidas DD, Elbert BL, Zhou Z, Leffler H, Ackerman SJ, Acharya KR, Crystal structure of human charcot-leyden crystal protein, an eosinophil lysophospholipase, identifies it as a new member of the carbohydrate-binding family of galectins, Structure 3, 1379-93 (1995).

    Google Scholar 

  14. Seetharaman J, Kanigsberg A, Slaaby R, Leffler H, Barondes SH, Rini JM, X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1 Å, J Biol Chem 273, 13047-52 (1998).

    Google Scholar 

  15. Lee RT, Ichikawa Y, Allen HJ, Lee YC, Binding characteristics of galactoside-binding lectin (galaptin) from human spleen, J Biol Chem 265, 7864-71 (1990).

    Google Scholar 

  16. Sparrow CP, Leffler H, Barondes SH, Multiple soluble γ-galactoside-binding lectins from human lung, J Biol Chem 262, 7383-90 (1987).

    Google Scholar 

  17. Knibbs RN, Agrawal N, Wang JL, Goldstein, IJ, Carbohydratebinding protein 35 II. Analysis of the interaction of the recombinant polypeptide with saccharides, J Biol Chem 268, 14940-7 (1993).

    Google Scholar 

  18. Sato S, Hughes RC, Binding specificity of a baby hamster kidney lectin for H type I and II chains, polylactosamine glycans, and appropriately glycosylated forms of laminin and fibronectin, J Biol Chem 267, 6983-90 (1992).

    Google Scholar 

  19. Swaminathan GJ, Leonidas DD, Savage MP, Ackerman SJ, R, AK, Selective recognition of mannose by the human eosinophil Charcot-Leyden crystal protein (galectin-10): a crystallographic study at 1.8 A resolution, Biochemistry 38, 13837-43 (1999).

    Google Scholar 

  20. Cho M, Cummings RD, Galectin-1: oligomeric structure and interactions with polylactosamine, Trends Glycosci Glycotech 9, 47-56 (1997).

    Google Scholar 

  21. Pace KE, Lee C, Stewart PL, Baum LG, Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1, J Immunol 163, 3801-11 (1999).

    Google Scholar 

  22. Pace KE, Hahn HP, Pang M, Nguyen JT, Baum LG, CD7 delivers a pro-apoptotic signal during galectin-1 induced T cell death, J Immunol 165, 2331-4 (2000).

    Google Scholar 

  23. Liu F-T, Galectins: A new family of regulators of inflammation, Clin Immunol 97, 79-88 (2000).

    Google Scholar 

  24. Nangia-Makker P, Akahani S, Bresalier R, Raz A, Lectins and Pathology, (Harwood Academic Publications, Amsterdam, 2000).

    Google Scholar 

  25. Magnaldo T, Fowlis D, Darmon M, Galectin-7, a marker of all types of stratified epithelia, Differentiation 63, 159-68 (1998).

    Google Scholar 

  26. Polyak K, Xia Y, Zweler JL, Kinzler KW, Vogelstein B, A model for p53-induced apoptosis, Nature 389, 300-5 (1997).

    Google Scholar 

  27. Lu J, Pei H, Kaeck M, Thompson HJ, Gene expression changes associated with chemically induced rat mammary carcinogenesis, Mol Carcinog 20, 204-15 (1997).

    Google Scholar 

  28. Lahm H, Andr´e S, Hoeflich A, Fischer JR, Sordat B, Kaltner H, Wolf E, and Gabius H-J, Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures, J Cancer Res Clin Oncol 127, 375-86 (2001).

    Google Scholar 

  29. Ahmad N, Gabius H-J, Kaltner H, Andre S, Kuwahara I, Liu F-T, Oscarson S, Norberg T, Brewer CF, Thermodynamic binding studies of cell surface carbohydrate epitopes to galectin-1,-3, and-7. Evidence for differential binding specificities, Can J Chem 80, 1096-1104 (2002).

    Google Scholar 

  30. Leffler H, Barondes SH, Specificity of binding of three soluble rat lung lectins to substituted and unsubstituted mammalian β-galactosides, J Biol Chem 261, 10119-26 (1986).

    Google Scholar 

  31. Schwarz FP, Ahmed H, Bianchet MA, Amzel LM, Vasta GR, Thermodynamics of bovine spleen galectin-1 binding to disaccharides: Correlation with structure and its effect on oligomerization at the denaturation temperature, Biochemistry 37, 5867-77 (1998).

    Google Scholar 

  32. Ramkumar R, Surolia A, and Podder SK, Energetics of carbohydrate binding by a 14 kDa S-type mammalian lectin, Biochem J 308, 237-41 (1995).

    Google Scholar 

  33. Gupta D, Cho M, Cummings RD, Brewer CF, Thermodynamics of carbohydrate binding to galectin-1 from chinese hamster ovary cells and two mutants. A comparison with four galactose-specific plant lectins, Biochemistry 35, 15236-43 (1996).

    Google Scholar 

  34. Bharadwaj S, Kaltner H, Korchagina EY, Bovin NV, Gabius H-J, Surolia A, Microcalorimetric indications for ligand binding as a function of the protein for galactoside-specific plant and avian lectins, Biochim Biophys Acta 1472, 191-6 (1999).

    Google Scholar 

  35. Dam TK, Roy R, Das SK, Oscarson S, Brewer CF, Binding of multivalent carbohydrates to concanavalin A and dioclea grandi-flora lectin. Thermodynamic analysis of the “multivalency effect”, J Biol Chem 275, 14223-30 (2000).

    Google Scholar 

  36. Virgilio SD, Glushka J, Moremen K, Pierce M, Enzymatic synthesis of natural and 13C enriched linear poly-N-acetyllactosamines as ligands for galectin-1, Glycobiology 9, 353-64 (1999).

    Google Scholar 

  37. Ahmed H, Allen HJ, Sharma A, Matta KL, Human splenic galaptin: Carbohydrate-binding specifity and characterization of the combining site, Biochemistry 29, 5315-9 (1990).

    Google Scholar 

  38. Henrick K, Bawumia S, Barboni E, AM, Mehul B, Hughes RC, Evidence for subsites in the galectins involved in sugar binding at the nonreducing end of the cental galactose of oligosaccharide ligands: Sequence analysis, homology modeling and mutagenesis studies of hamster galectin-3, Glycobiology 8, 45-57 (1998).

    Google Scholar 

  39. Ahmed H, Fink NE, Pohl J, Vasta GR, Galectin-1 from bovine spleen: Biochemical characterization, carbohydrate specificity and tissuespecific isoform profiles, J Biochem 120, 1007-19 (1996).

    Google Scholar 

  40. Yamazaki N, Kojima S, Bovin NV, Andre S, Gabius S, Gabius H-J, Endogenous lectins as targets for drug delivery, Adv Drug Deliv Rev 43, 225-44 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fred Brewer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brewer, C.F. Thermodynamic binding studies of galectin-1, -3 and -7. Glycoconj J 19, 459–465 (2002). https://doi.org/10.1023/B:GLYC.0000014075.62724.d0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000014075.62724.d0

Navigation