Skip to main content
Log in

Galectin 9 is the sugar-regulated urate transporter/channel UAT

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

UAT, also designated galectin 9, is a multifunctional protein that can function as a urate channel/transporter, a regulator of thymocyte-epithelial cell interactions, a tumor antigen, an eosinophil chemotactic factor, and a mediator of apoptosis. We review the evidence that UAT is a transmembrane protein that transports urate, describe our molecular model for this protein, and discuss the evidence from epitope tag and lipid bilayer studies that support this model of the transporter. The properties of recombinant UAT are compared with those of urate transport into membrane vesicles derived from proximal tubule cells in rat kidney cortex. In addition, we review channel functions predicted by our molecular model that resulted in the novel finding that the urate channel activity is regulated by sugars and adenosine. Finally, the presence and possible functions of at least 4 isoforms of UAT and a closely related gene hUAT2 are discussed. Published in 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leal-Pinto E, Tao W, Rappaport J, et al., Molecular cloning and functional reconstitution of a urate transporter/channel, J Biol Chem, 272, 617-25 (1997).

    Google Scholar 

  2. Wada J, Kanwar YS, Identification and characterization of galectin-9, a novel beta-galactoside-binding mammalian lectin, J Biol Chem, 272, 6078-86 (1997).

    Google Scholar 

  3. Tureci O, Schmitt H, Fadle N, Pfreundschuh M, Sahin U, Molecular definition of a novel human galectin which is immunogenic in patients with Hodgkin's disease, J Biol Chem, 272, 6416-22 (1997).

    Google Scholar 

  4. Leal-Pinto E, Cohen BE, Lipkowitz MS, Abramson RG, Functional analysis and molecular model of the human urate transporter/ channel, hUAT, Am J Physiol Renal Physiol, 283, F150-63 (2002).

    Google Scholar 

  5. Rappoport JZ, Lipkowitz MS, Abramson RG, Localization and topology of a urate transporter/channel, a galectin, in epitheliumderived cells, Am J Physiol Cell Physiol, 281, C1926-39 (2001).

    Google Scholar 

  6. Hyink DP, Rappoport JZ, Wilson PD, Abramson RG, Expression of the urate transporter/channel is developmentally regulated in human kidneys, Am J Physiol Renal Physiol, 281, F875-86 (2001).

    Google Scholar 

  7. Lipkowitz MS, Leal-Pinto E, Rappoport JZ, Najfeld V, Abramson RG, Functional reconstitution, membrane targeting, genomic structure, and chromosomal localization of a human urate transporter, J Clin Invest, 107, 1103-15 (2001).

    Google Scholar 

  8. Leal-Pinto E, Cohen BE, Abramson RG, Functional analysis and molecular modeling of a cloned urate transporter/channel, J Membr Biol, 169, 13-27 (1999).

    Google Scholar 

  9. Wada J, Ota K, Kumar A, Wallner EI, Kanwar YS, Developmental regulation, expression, and apoptotic potential of galectin-9, a beta-galactoside binding lectin, J Clin Invest, 99, 2452-61 (1997).

    Google Scholar 

  10. Matsumoto R, Matsumoto H, Seki M, et al., Human ecalectin, a variant of human galectin-9, is a novel eosinophil chemoattractant produced by T lymphocytes, J Biol Chem, 273, 16976-84 (1998).

    Google Scholar 

  11. Saita N, Goto E, Yamamoto T, et al., Association of galectin-9 with eosinophil apoptosis, Int Arch Allergy Immunol, 128, 42-50, AA&;action=render&;rendertype=fulltext&;uid=IAA.iaa28042 (2002).

    Google Scholar 

  12. Steele TH, Urate excretion in man, normal and gouty. In Handbook Experimental Pharmacology, edited by Kelley WN, Weiner IM. (Springer-Verlag, Berlin, Germany, 1978), vol. 51 pp. 257-86.

    Google Scholar 

  13. Saggiani F, Pilati S, Targher G, et al., Serum uric acid and related factors in 500 hospitalized subjects, Metabolism, 45, 1557-61 (1996).

    Google Scholar 

  14. Jossa F, Farinaro E, Panico S, et al., Serum uric acid and hypertension: The Olivetti heart study, J Hum Hypertens, 8, 677-81 (1994).

    Google Scholar 

  15. Goldstein HS, Manowitz P, Relation between serum uric acid and blood pressure in adolescents, Ann Hum Biol, 20, 423-31 (1993).

    Google Scholar 

  16. Mazzali M, Hughes J, Kim YG, et al., Hyperuricemia causes hypertension and renal diseae via a novel crystal-independent mechanism, J Am Soc Nephrol, 11, 337A (2000).

    Google Scholar 

  17. Moro F, Ogg CS, Simmonds HA, et al., Familial juvenile gouty nephropathy with renal urate hypoexcretion preceding renal disease, Clin Nephrol, 35, 263-9 (1991).

    Google Scholar 

  18. McBride MB, Raman V, Ogg CS, et al., Renal urate hypoexcretion preceding renal disease in a new kindred with familial juvenile gouty nephropathy (FJGN), Adv Exp Med Biol, 191-4 (1991).

  19. Yokota N, Yamanaka H, Yamamoto Y, et al., Autosomal dominant transmission of gouty arthritis with renal disease in a large Japanese family, Ann Rheum Dis, 50, 108-11 (1991).

    Google Scholar 

  20. Saeki A, Hosoya T, Okabe H, et al., Newly discovered familial juvenile gouty nephropathy in a Japanese family, Nephron, 70, 359-66 (1995).

    Google Scholar 

  21. McBride MB, Rigden S, Haycock GB, et al., Presymptomatic detection of familial juvenile hyperuricaemic nephropathy in children, Pediatr Nephrol, 12, 357-64 (1998).

    Google Scholar 

  22. Massari PU, Hsu CH, Barnes RV, et al., Familial hyperuricemia and renal disease, Arch Intern Med, 140, 680-4 (1980).

    Google Scholar 

  23. Puig JG, Miranda ME, Mateos FA, et al., Hereditary nephropathy associated with hyperuricemia and gout, Arch Intern Med, 153, 357-65 (1993).

    Google Scholar 

  24. Reiter L, Brown MA, Edmonds J, Familial hyperuricemic nephropathy, Am J Kidney Dis, 25, 235-41 (1995).

    Google Scholar 

  25. Syrjanen J, Mustonen J, Pasternack A, Hypertriglyceridaemia and hyperuricaemia are risk factors for progression of IgA nephropathy, Nephrol Dial Transplant, 15, 34-42 (2000).

    Google Scholar 

  26. Langford HG, Blaufox MD, Borhani NO, et al., Is thiazideproduced uric acid elevation harmful? Analysis of data from the hypertension detection and follow-up program, Arch Intern Med 147, 645-9 (1987).

    Google Scholar 

  27. Bengtsson C, Lapidus L, Stendahl C, Waldenstrom J, Hyperuricaemia and risk of cardiovascular disease and overall death. A 12-year follow-up of participants in the population study of women in Gothenburg, Sweden, Acta Med Scand, 224, 549-55 (1988).

    Google Scholar 

  28. Freedman DS, Williamson DF, Gunter EW, Byers T, Relation of serum uric acid to mortality and ischemic heart disease. The NHANES I Epidemiologic Follow-up Study, Am J Epidemiol, 141, 637-44 (1995).

    Google Scholar 

  29. Alderman MH, Cohen H, Madhavan S, Kivlighn S, Serum uric acid and cardiovascular events in successfully treated hypertensive patients, Hypertension, 34, 144-50 (1999).

    Google Scholar 

  30. Johnson RJ, Kivlighn SD, Kim YG, Suga S, Fogo AB, Reappraisal of the pathogenesis and consequences of hyperuricemia in hypertension, cardiovascular disease, and renal disease, Am J Kidney Dis, 33, 225-34 (1999).

    Google Scholar 

  31. Culleton BF, Larson MG, Kannel WB, Levy D, Serum uric acid and risk for cardiovascular disease and death: The framingham heart study [see comments], Ann Intern Med, 131, 7-13 (1999).

    Google Scholar 

  32. Dobson A, Is raised serum uric acid a cause of cardiovascular disease or death? Lancet, 354, 1578 (1999).

    Google Scholar 

  33. Johnson RJ, Tuttle KR, Culleton B, Levy D, Much ado about nothing, or much to do about something? The continuing controversy over the role of uric acid in cardiovascular disease, Hypertension 35, E10-3 (2000).

    Google Scholar 

  34. Abramson RG, Levitt MF, Micropuncture study of uric acid transport in rat kidney, Am J Physiol, 228, 1597-1605 (1975).

    Google Scholar 

  35. Abramson RG, Lipkowitz MS, Evolution of the uric acid transport mechanisms in vertebrate kidney. In edited by Kinne RKH. Basic Principles in Transport, (Basel Switzerland, Karger, 1990), vol 3., pp. 115-53.

  36. Knorr BA, Lipkowitz MS, Potter BJ, Masur SK, Abramson RG, Isolation and immunolocalization of a rat renal cortical membrane urate transporter, J Biol Chem, 269, 6759-64 (1994).

    Google Scholar 

  37. Abramson RG, King VF, Reif MC, Leal-Pinto E, Baruch SB, Urate uptake in membrane vesicles of rat renal cortex: Effect of copper, Am J Physiol, 242, F158-70 (1982).

    Google Scholar 

  38. Abramson RG, Lipkowitz MS, Carrier-mediated concentrative urate transport in rat renal membrane vesicles, Am J Physiol, 248, F574-84 (1985).

    Google Scholar 

  39. Guggino SE, Martin GJ, Aronson PS, Specificity and modes of the anion exchanger in dog renal microvillus membranes, Am J Physiol, 244, F612-21 (1983).

    Google Scholar 

  40. Kahn AM, Aronson PS, Urate transport via anion exchange in dog renal microvillus membrane vesicles, Am J Physiol, 244, F56-63 (1983).

    Google Scholar 

  41. Roch-Ramel F, Werner D, Guisan B, Urate transport in brushborder membrane of human kidney, Am J Physiol, 266, F797-805 (1994).

    Google Scholar 

  42. Blomstedt JW, Aronson PS, pH gradient-stimulated transport of urate and p-aminohippurate in dog renal microvillus membrane vesicles, J Clin Invest, 65, 931-4 (1980).

    Google Scholar 

  43. Enomoto A, Kimura H, Chairoungdua A, et al., Molecular identi-fication of a renal urate anion exchanger that regulates blood urate levels, Nature, 417, 447-52 (2002).

    Google Scholar 

  44. Barondes SH, Gitt MA, Leffler H, Cooper DN, Multiple soluble vertebrate galactoside-binding lectins, Biochimie, 70, 1627-32 (1988).

    Google Scholar 

  45. Gitt MA, Massa SM, Leffler H, Barondes SH, Isolation and expression of a gene encoding L-14-II, a new human soluble lactosebinding lectin, J Biol Chem, 267, 10601-6 (1992).

    Google Scholar 

  46. Hughes RC, Secretion of the galectin family of mammalian carbohydrate-binding proteins, Biochim Biophys Acta, 1473, 172- 85 (1999).

    Google Scholar 

  47. Oda Y, Herrmann J, Gitt MA, et al., Soluble lactose-binding lectin from rat intestine with two different carbohydrate-binding domains in the same peptide chain, J Biol Chem, 268, 5929-39 (1993).

    Google Scholar 

  48. Hirashima M, Ecalectin as a T cell-derived eosinophil chemoattractant [In Process Citation], Int Arch Allergy Immunol, 120, 7-10 (1999).

    Google Scholar 

  49. Chabot S, Kashio Y, Seki M, et al., Regulation of galectin-9 expression and release in Jurkat T cell line cells, Glycobiology, 12, 111-8 (2002).

    Google Scholar 

  50. Knorr BA, Beck JC, Abramson RG, Classical and channel-like urate transporters in rabbit renal brush border membranes, Kidney Int, 45, 727-36 (1994).

    Google Scholar 

  51. Leal-Pinto E, Lipkowitz MS, Cohen BE, Abramson RG, Activity of rat and human urate transporters, rUAT and hUAT, is regulated by copper,JAmSoc Neph, 11 (Program and Abstracts), 45A (2000).

    Google Scholar 

  52. Spitzenberger F, Graessler J, Schroeder HE, Molecular and functional characterization of galectin 9 mRNA isoforms in porcine and human cells and tissues, Biochimie, 83, 851-62 (2001).

    Google Scholar 

  53. Ali N, Salahuddin A, Isolation and characterization of soluble beta-galactoside-binding lectins from mammalian liver, Biochim Biophys Acta, 992, 30-4 (1989).

    Google Scholar 

  54. Whitehead TP, Jungner I, Robinson D, et al., Serum urate, serum glucose and diabetes, Ann Clin Biochem, 29, 159-61 (1992).

    Google Scholar 

  55. Gonzalez-Sicilia L, Garcia-Estan J, Martinez-Blazquez A, et al., Renal metabolism of uric acid in type I insulin-dependent diabetic patients: Relation to metabolic compensation, Horm Metab Res 29, 520-3 (1997).

    Google Scholar 

  56. Magoula I, Tsapas G, Paletas K, Mavromatidis K, Insulindependent diabetes and renal hypouricemia, Nephron, 59, 21-6 (1991).

    Google Scholar 

  57. Lifton RP, Gharavi AG, Geller DS, Molecular mechanisms of human hypertension, Cell, 104, 545-56 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Lipkowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipkowitz, M.S., Leal-Pinto, E., Cohen, B.E. et al. Galectin 9 is the sugar-regulated urate transporter/channel UAT. Glycoconj J 19, 491–498 (2002). https://doi.org/10.1023/B:GLYC.0000014078.65610.2f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000014078.65610.2f

Navigation