Skip to main content
Log in

A glycosynapse in myelin?

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Myelin, the multilayered membrane which surrounds nerve axons, is the only example of a membranous structure where contact between extracellular surfaces of membrane from the same cell occurs. The two major glycosphingolipids (GSLs) of myelin, galactosylceramide (GalC) and its sulfated form, galactosylceramide I3-sulfate (SGC), can interact with each other by trans carbohydrate-carbohydrate interactions across apposed membranes. They occur in detergent-insoluble lipid rafts containing kinases and thus may be located in membrane signaling domains. These signaling domains may contact each other across apposed extracellular membranes, thus forming glycosynapses in myelin. Multivalent forms of these carbohydrates, GalC/SGC-containing liposomes, or galactose conjugated to albumin, have been added to cultured oligodendrocytes (OLs) to mimic interactions which might occur between these signaling domains when OL membranes or the extracellular surfaces of myelin come into contact. These interactions between multivalent carbohydrate and the OL membrane cause co-clustering or redistribution of myelin GSLs, GPI-linked proteins, several transmembrane proteins, and signaling proteins to the same membrane domains. They also cause depolymerization of the cytoskeleton, indicating that they cause transmission of a signal across the membrane. Their effects have similarities to those of anti-GSL antibodies on OLs, shown by others, suggesting that the multivalent carbohydrate interacts with GalC/SGC in the OL membrane. Communication between the myelin sheath and the axon regulates both axonal and myelin function and is necessary to prevent neurodegeneration. Participation of transient GalC and SGC interactions in glycosynapses between the apposed extracellular surfaces of mature compact internodal myelin might allow transmission of signals throughout the myelin sheath and thus facilitate myelin-axonal communication. Published in 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bunge MB, Bunge RP, Ris H, Ultrastructural study of remyelina-tion in an experimental lesion in adult cat spinal cord, J Biophys Biochem Cytol 10, 67-94 (1961).

    Article  PubMed  CAS  Google Scholar 

  2. Norton WT, Isolation and characterization of myelin. In Myelin, edited by Morell P (Plenum Press, New York, 1977), pp. 161-99.

    Google Scholar 

  3. Inouye H, Kirschner DA, Membrane interactions in nerve myelin: II. Determination of surface charge from biochemical data, Bio-phys J 53, 247-60 (1988).

    CAS  Google Scholar 

  4. Ishizuka I, Inomata M, Sulphated glycoglycerolipids in rat brain: Decrease and disappearance after developmental age, J Neurochem 33, 387-8 (1979).

    PubMed  CAS  Google Scholar 

  5. Burgisser P, Althaus H-H, Rohmann A, Neuhoff V, Lipid syn-thesis by oligodendrocytes from adult pig brain maintained in long-term culture, Neurochem Int 13, 111-8 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Shimomura K, Kishimoto Y, Changes in monogalactosyl diacyl-glycerols, alkylgalactolipids,and cerebroside fatty acid esters in maturing brain measured by high-performance liquid chromatography, Biochim Biophys Acta 794, 162-4 (1984).

    PubMed  CAS  Google Scholar 

  7. Pieringer J, Rao GS, Mandel P, Pieringer RA, The association of the sulphogalactosylglycerolipid of rat brain with myelination, Biochem J 166, 421-8 (1977).

    PubMed  CAS  Google Scholar 

  8. Coetzee T, Fujita N, Dupree J, Shi R, Blight A, Suzuki K, Suzuki K, Popko B, Myelination in the absence of galactocerebroside and sulfatide: Normal structure with abnormal function and regional instability, Cell 86, 209-19 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. Bosio A, Binczek E, Stoffel W, Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis, Proc Natl Acad Sci USA 93, 13280-5 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. Dupree JL, Girault J-A, Popko B. Axoglial interactions regulate the localization of axonal paranodal proteins, J Cell Biol 147, 1145-51 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. Boison D, Stoffel W, Disruption of the compacted myelin sheath of axons of the central nervous system in proteolipid protein-deficient mice, Proc Natl Acad Sci USA 91, 11709-13 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. Li C, Tropak MB, Gerlai R, Clapoff S, Abramow-Newerly W, Trapp B, Peterson A, Roder J, Myelination in the absence of myelin-associated glycoprotein, Nature 369, 747-50 (1994).

    Article  PubMed  CAS  Google Scholar 

  13. Honke K, Hirahara Y, Dupree J, Suzuki K, Popko B, Fukushima K, Fukushima J, Nagasawa T, Yoshida N, Wada Y, Taniguchi N, Paranodal junction formation and spermatogenesis require sul-foglycolipids, Proc Natl Acad Sci USA 99, 4227-32 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. Ishibashi T, Dupree JL, Ikenaka K, Hirahara Y, Honke K, Peles E, Popko B, Suzuki K, Nishino H, Baba H, A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation, J Neurosci 22, 6507-14 (2002)

    PubMed  CAS  Google Scholar 

  15. Poliak S, Gollan L, Salomon D, Berglund EO, Ohara R, Ranscht B, Peles E, Localization of Caspr2 in myelinated nerves depends on axonglia interactions and the generation of barriers along the axon, J Neurosci 21, 7568-75 (2001).

    PubMed  CAS  Google Scholar 

  16. Marcus J, Dupree JL, Popko B, Myelin-associated glycoprotein and myelin galactolipids stabilize developing axo-glial interactions, J Cell Biol 156, 567-77 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. Hirahara Y, Bansal R, Honke K, Ikenaka K, Wada Y, Sulfatide is a negative regulator of oligodendrocyte differentiation: Develop-ment in sulfatide-null mice, Glia 45, 269-77 (2004).

    Article  PubMed  Google Scholar 

  18. Okamura N, Stoskopf M, Yamaguchi H, Kishimoto Y, Lipid composition of the nervous system of earthworms (Lumbricus terrestris), J Neurochem 45, 1875-9 (1985).

    PubMed  CAS  Google Scholar 

  19. Kishimoto Y, Phylogenetic development of myelin glycosphin-golipids, Chem Phys Lipids 42, 117-28 (1986).

    Article  PubMed  CAS  Google Scholar 

  20. Roots BI, The evolution of myelinating cells. In Neuron-Glia Interrelations During Phylogeny: I. Phylogeny and Ontogeny of Glial Cells,edited by Vernadakis A, Roots B (Humana Press, Inc., Totowa, NJ, 1995), pp 223-48.

    Google Scholar 

  21. Inouye H, Kirschner DA, Phylogenetic aspects of myelin structure. In Cellular and Molecular Biology of Myelination, edited by Jeserich G, Althaus HH, Waehneldt TV (Springer-Verlag, Berlin,1990), pp. 376-87.

    Google Scholar 

  22. Selivonchick DP, Roots BI, Variation in myelin lipid composi-tion induced by change in environmental temperature of goldfish (Carassius aurattus L.), J Thermal Biol 1, 131-5 (1976).

    Article  CAS  Google Scholar 

  23. Burgisser P, Matthieu J-M, Waehneldt TV, Myelin lipids: A phy-logenetic study, Neurochem Res 11, 1261-72 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. Tamai Y, Kojima H, Saito S, Takayama-Abe K, Horichi H, Char-acteristic distribution of glycolipids in gadoid fish nerve tissues and its bearing on phylogeny, J Lipid Res 33, 1351-9 (1992).

    PubMed  CAS  Google Scholar 

  25. Anderson RG, Caveolae: Where incoming and outgoing messen-gers meet, Curr Opin Cell Biol 5, 647-52 (1993).

    Article  PubMed  CAS  Google Scholar 

  26. Lisanti MP, Scherer PE, Vidugiriene J, Tang Z, Hermanowski-Vosatka A, Tu YH, Cook RF, Sargiacomo M, Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease, J Cell Biol 126, 111-26 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. Kasahara K, Sanai Y, Functional roles of glycosphingolipids in signal transduction via lipid rafts, Glycoconj J 17, 153-62 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. Hoessli DC, Ilangumaran S, Soltermann A, Robinson PJ, Borisch B, and Ud-Din N, Signaling through sphingolipid microdomains of the plasma membrane: The concept of signaling platform, Glycoconj J 17, 191-7 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. Simons K, Ikonen E, Functional rafts in cell membranes, Nature 387, 569-72 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. Menon K, Rasband MN, Taylor CM, Brophy P, Bansal R, Pfeiffer SE, The myelin-axolemmal complex: Biochemical dissection and the role of galactosphingolipids, J Neurochem 87, 995-1009 (2003).

    Article  PubMed  CAS  Google Scholar 

  31. Taylor CM, Marta CB, Claycomb RJ, Han DK, Rasband MN, Coetzee T, Pfeiffer SE, Proteomic mapping provides powerful insights into functional myelin biology, Proc Natl Acad Sci USA 101, 4643-8 (2004).

    Article  PubMed  CAS  Google Scholar 

  32. Kabayama K, Ito N, Honke K, Igarashi Y, Inokuchi J-I, Sup-pression of integrin expression and tumorigenicity by sulfation of lactosylceramide in 3LL Lewis lung carcinoma cells, J Biol Chem 276, 26777-83 (2001).

    Article  PubMed  CAS  Google Scholar 

  33. Tadano-Aritomi K, Hikita T, Fujimoto H, Suzuki K, Motegi K, Ishizuka I, Kidney lipids in galactosylceramide synthase-deficient mice: Absence of galactosylsulfatide and compensatory increase in more polar sulfoglycolipids, J Lip Res 41, 1237-43 (2000).

    CAS  Google Scholar 

  34. Laudana C, Constantin G, Baron P, Scarpini E, Scarlato G, Cabrini G, Dechecchi C, Rossi F, Cassatella MA, Berton G, Sul-fatides trigger increase of cytosolic free calcium and enhanced expression of TNF-i and IL-8 mRNA in human neutrophils. Ev-idence for a role of L-selectin as a signaling molecule, J Biol Chem 269, 4021-6 (1994).

    Google Scholar 

  35. Miura R, Aspberg A, Ethell IM, Hagihara K, Schnaar RL, Ruoslahti E, Yamaguchi Y, The proteoglycan lectin domain binds sulfated cell surface glycolipids and promotes cell adhesion, J Biol Chem 274, 11431-8 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. Roberts DD, Sulfatide-binding proteins, Methods Enzymol 138, 473-83 (1987).

    Article  PubMed  CAS  Google Scholar 

  37. Pesheva P, Gloor S, Schachner M, Probstmeier R, Tenascin-R is an intrinsic autocrine factor for oligodendrocyte differentiation and promotes cell adhesion by a sulfatide-mediated mechanism, J Neurosci 17, 4642-51 (1997).

    PubMed  CAS  Google Scholar 

  38. Crossin KL, Edelman GM, Specific binding of cytotactin to sul-fated glycolipids, J Neurosci Res 33, 631-8 (1992).

    Article  PubMed  CAS  Google Scholar 

  39. Mamelak D, Mylvaganam M, Whetstone H, Hartmann E, Lennarz W, Wyrick PB, Raulston J, Han H, Hoffman P, Lingwood CA, Hsp70s contain a specific sulfogalactolipid binding site. Dif-ferential aglycone influence on sulfogalactosyl ceramide binding by recombinant prokaryotic and eukaryotic hsp70 family mem-bers, Biochemistry 40, 3572-82 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. Webb MS, Tilcock CPS, Green BR, Salt-mediated interactions between vesicles of the thylakoid lipid digalactosyldiacylglyc-erol, Biochim Biophys Acta 938, 323-33 (1988).

    Article  CAS  Google Scholar 

  41. Kojima N, Hakomori SJ, Specific interaction between ganglio-triaosylceramide (Gg3) and sialosyllactosylceramide (GM3) as a basis for specific cellular recognition between lymphoma and melanoma cells, J Biol Chem 264, 20159-62 (1989).

    PubMed  CAS  Google Scholar 

  42. Eggens I, Fenderson B, Toyokuni T, Dean B, Stroud M, Hakomori S, Specific interaction between Le x and Le x determinants. A possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells,J Biol Chem 264, 9467-84 (1989).

    Google Scholar 

  43. Kojima N, Hakomori S, Cell adhesion, spreading, and motility of GM3-expressing cells based on glycolipid-glycolipid interaction, J Biol Chem 266, 17552-8 (1991).

    PubMed  CAS  Google Scholar 

  44. Kojima N, Shiota M, Sadahira Y, Handa K, Hakomori S, Cell adhesion in a dynamic flow system as compared to static system. Glycosphingolipid-glycosphingolipid interaction in the dynamic system predominate over lectin-or integrin-based mechanisms in adhesion of B16 melanoma cells to non-activated endothelial cells, J Biol Chem 267, 17264-70 (1992).

    PubMed  CAS  Google Scholar 

  45. Hakomori S, Carbohydrate-carbohydrate interaction as an initial step in cell recognition, Pure Appl Chem 63, 473-82 (1991).

    CAS  Google Scholar 

  46. Spillmann D, Carbohydrates in cellular recognition: From leucine-zipper to sugar-zipper? Glycoconj J 11, 169-71 (1994).

    Article  PubMed  CAS  Google Scholar 

  47. Bovin NV, Carbohydrate-carbohydrate interaction, in Glyco-sciences: Status and Perspectives, edited by Gabius H-J, Gabius S (Chapman and Hall, Weinheim, 1997) pp. 277-89.

  48. Cook WJ, Bugg, CE, Calcium-carbohydrate bridges composed of uncharged sugars. Structure of a hydrated calcium bromide.108 Boggs et al.complex of á-fucose, Biochim Biophys Acta 389, 428-35 (1975).

    Article  PubMed  CAS  Google Scholar 

  49. Yu ZW, Calvert TL, Leckband D, Molecular forces between membranes displaying neutral glycosphingolipids: Evidence for carbohydrate attraction,Biochemistry 37, 1540-50 (1998).

    Article  PubMed  CAS  Google Scholar 

  50. Tromas C, Rojo J, De La Fuente JM, Barrientos AG, Garcia R, Penades S, Adhesion Forces between LewisX Determinant Antigens as Measured by Atomic Force Microscopy, Angew Chem Int Ed Engl 40, 3052-5 (2001).

    Article  PubMed  CAS  Google Scholar 

  51. Pincet F, Le Bouar T, Zhang Y, Esnault J, Mallet J-M, Perez E, Sinay P, Ultraweak sugar-sugar interactions for transient cell adhesion, Biophys J 80, 1354-8 (2001).

    PubMed  CAS  Google Scholar 

  52. Dammer U, Popescu O, Wagner P, Anselmetti D, Guntherodt H-J, Misevic GN, Binding strength between cell adhesion proteoglycans measured by atomic force microscopy, Science 267, 1173-5 (1995).

    PubMed  CAS  Google Scholar 

  53. Matsuura K, Kitakouji H, Sawada N, Ishida H, Kiso M, Kitajima K, Kobayashi K, A quantitative estimation of carbohydrate-carbohydrate interaction using clustered oligosaccharides of gly-colipid monolayers and of artificial glycoconjugate polymers by surface plasmon resonance, J AmChem Soc 122, 7406-7 (2000).

    Article  CAS  Google Scholar 

  54. Haseley SR, Vermeer HJ, Kamerling JP, Vliegenthart JFG, Carbohydrate self-recognition mediates marine sponge cellular adhesion, Proc Natl Acad Sci USA 98, 9419-24 (2001).

    Article  PubMed  CAS  Google Scholar 

  55. Santacroce PV, Basu A, Probing specificity in carbohydrate-carbohydrate interactions with micelles and Langmuir monolay-ers, Angew Chem Int Ed 42, 95-8 (2003).

    Article  CAS  Google Scholar 

  56. Song Y, Withers DA, Hakomori S, Globoside-dependent adhesion of human embryonal carcinoma cells, based on carbohydrate-carbohydrate interaction, initiates signal transduc-tion and induces enhanced activity of transcription factors AP1 and CREB, J Biol Chem 273, 2517-25 (1998).

    Article  PubMed  CAS  Google Scholar 

  57. Stewart RJ, Boggs, JM, The carbohydrate-carbohydrate interac-tion between galactosylceramide-containing liposomes and cere-broside sulfate-containing liposomes: Dependence on the glycolipid ceramide composition, Biochemistry 32, 10666-74 (1993).

    Article  PubMed  CAS  Google Scholar 

  58. Boggs JM, Menikh A, Rangaraj G, Trans interaction between galactosylceramide and cerebroside sulfate across apposed bi-layers, Biophys J 78, 874-85 (2000).

    PubMed  CAS  Google Scholar 

  59. Koshy KA, Boggs JM, Investigation of the calcium-mediated interaction between the carbohydrate headgroups of galactosyl-ceramide and galactosylceramide I 3 sulfate by electrospray ion-ization mass spectrometry, J Biol Chem 271, 3496-9 (1996).

    Article  PubMed  CAS  Google Scholar 

  60. Koshy KM, Wang J, Boggs JM, Divalent-cation mediated interac-tion between cerebroside sulfate and cerebrosides: An investigation of the effect of structural variations of lipids by electrospray ionization mass spectrometry, Biophys J 77, 306-18 (1999).

    PubMed  CAS  Google Scholar 

  61. Kulkarni VS, Boggs JM, RE Brown, Modulation of nanotube formation by structural modifications of sphingolipids, Biophys J 77, 319-30 (1999).

    PubMed  CAS  Google Scholar 

  62. Dicko A, Heng YM, Boggs JM, Interactions between glucosyl-ceramide and galactosylceramide I 3 sulfate and microstructures formed, Biochim Biophys Acta 1613, 87-100 (2003).

    Article  PubMed  CAS  Google Scholar 

  63. Dyer CA, Novel oligodendrocyte transmembrane signaling sys-tems, Mol Neurobiol 7, 1-22 (1993).

    PubMed  CAS  Google Scholar 

  64. Welte K, Miller G, Chapman PB, Yuasa H, Natoli E, Kunicka JE, Cordon-Cardo C, Buhrer C, Old LJ, Houghton AN, Stimulation of T lymphocyte proliferation by monoclonal Abs against GD3 ganglioside, J Immunol 139, 1763-71 (1987).

    PubMed  CAS  Google Scholar 

  65. Stefanova I, Horejsi V, Ansotegui IJ, Knapp W, Stockinger H, GPI-anchored cell-surface molecules complexed to protein tyrosine kinases, Science 254, 1016-9 (1991).

    PubMed  CAS  Google Scholar 

  66. Lund-Johansen F, Olweus J, Horejsi V, Skubitz KM, Thompson JS, Vilella R, Symington FW, Activation of human phagocytes through carbohydrate antigens (CD15, sialyl-CD15, CDw17, and CDw65, J Immunol 148, 3221-9 (1992).

    PubMed  CAS  Google Scholar 

  67. Boussiotis VA, Pardo NA, Collins H, Houghton A, Ritz J, Nadler LM, Soiffer RJ, R24 anti-GD3 ganglioside antibody can induce costimulation and prevent the induction of alloantigen-specific T cell clonal anergy, Eur J Immunol 26, 2149-54 (1996).

    PubMed  CAS  Google Scholar 

  68. Kasahara K, Watanabe Y, Yamamoto T, Sanai Y, Association of Src family tyrosine kinase Lyn with ganglioside GD3 in rat brain, J Biol Chem 272, 29947-53 (1997).

    Article  PubMed  CAS  Google Scholar 

  69. Iwabuchi K, Yamamura S, Prinetti A, Handa K, Hakomori, S, GM3-enriched microdomain involved in cell adhesion and sig-nal transduction through carbohydrate-carbohydrate interaction in mouse melanoma B16 cells, J Biol Chem 273, 9130-8 (1998).

    Article  PubMed  CAS  Google Scholar 

  70. Iwabuchi K, Handa K, Hakomori S, Separation of "glycosphin-golipid signaling domain" from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling, J Biol Chem 273, 33766-73 (1998).

    Article  PubMed  CAS  Google Scholar 

  71. Prinetti A, Iwabuchi K, Hakomori S, Glycosphingolipid-enriched signaling domain in mouse neuroblastoma neuro2a cells, J Biol Chem 274, 20916-24 (1999).

    Article  PubMed  CAS  Google Scholar 

  72. Hakomori S, Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain, Glycoconj J 17, 143-51 (2000).

    Article  PubMed  CAS  Google Scholar 

  73. Hakomori S, The glycosynapse, Proc Natl Acad Sci USA 99, 225-32 (2002).

    Article  CAS  Google Scholar 

  74. Hakomoi S, Handa K, Glycosphingolipid-dependent cross-talk between glycosynapses interfacing tumor cells with their host cells: Essential basis to define tumor malignancy, FEBS Lett 531, 88-92 (2002).

    Article  Google Scholar 

  75. Kirschner DA, Inouye H, Ganser AL, Mann V, Myelin mem-brane structure and composition correlated: a phylogenetic study, J Neurochem 53, 1599-609 (1989).

    PubMed  CAS  Google Scholar 

  76. Tristram-Nagle S, Nagle JF, Lipid bilayers: Thermodynamics, structure, fluctuations, and interactions,Chem Phys Lipids127,3-14(2004).

    Article  PubMed  CAS  Google Scholar 

  77. Kramer E-M, Koch T, Niehaus A, Trotter J, Oligodendrocytes direct glycosyl phosphatidylinositol-anchored proteins to the myelin sheath in glycosphingolipid-rich complexes, J Biol Chem 272, 8937-45(1997).

    Article  PubMed  CAS  Google Scholar 

  78. Kramer E-M, Klein C, Koch T, Boytinck M, Trotter J, Com-partmentation of fyn kinase with glycosylphosphatidylinositol-anchored molecules in oligodendrocytes facilitates kinase activation during myelination, J Biol Chem 274, 29042-9 (1999).

    Article  PubMed  CAS  Google Scholar 

  79. Simons M, Kramer EM, Thiele C, Stoffel W, Trotter J, Assembly of myelin by association of proteolipid protein with cholesterol-and galactosylceramide-rich membrane domains, J Cell Biol151, 143-54 (2000).

    Article  PubMed  CAS  Google Scholar 

  80. Arvanitis DN, Wang H, Bagshaw RD, Callahan JW, Boggs JM, Membrane-associated estrogen receptor and caveolin-1 are present in central nervous system myelin and oligodendrocyte plasma membranes, J Neurosci Res 75, 603-13 (2004).

    Article  PubMed  CAS  Google Scholar 

  81. Benjamins JA, Dyer CA, Glycolipids and transmembrane signaling in oligodendroglia, Annals NY Acad Sci 605, 90-100 (1990)

    CAS  Google Scholar 

  82. Bansal R, Gard AL, Pfeiffer SE, Stimulation of oligodendrocyte differentiation in culture by growth in the presence of a monoclonal antibody to sulfated glycolipid,J Neurosci Res 21, 260-7 (1988).

    Article  PubMed  CAS  Google Scholar 

  83. Bansal R, Pfeiffer SE, Reversible inhibition of oligodendrocyte progenitor differentiation by a monoclonal antibody against surface galactolipids, Proc Natl Acad Sci USA 86, 6181-5 (1989).

    Article  PubMed  CAS  Google Scholar 

  84. Bansal R, Pfeiffer SE, Regulation of gene expression in mature oligodendrocytes by the specialized myelin-like membrane envi-ronment: Antibody perturbation in culture with the monoclonal antibody R-mAb, Glia 12, 173-9 (1994).

    Article  PubMed  CAS  Google Scholar 

  85. Dyer CA, Benjamins JA, Galactocerebroside and sulfatide inde-pendently mediate Ca responses in oligodendrocytes, J Neurosci Res 30, 699-711 (1991).

    Article  PubMed  CAS  Google Scholar 

  86. Dyer CA, Philibotte TM, Wolf MK, Billings-Gagliardi S, MBP mediates extracellular signals that regulate microtubule stability in oligodendrocyte membrane sheets, J Neurosci Res 39, 97-107 (1994).

    Article  PubMed  CAS  Google Scholar 

  87. Dyer CA, Philibotte T, Wolf MK, Billings-Gagliardi S, Regulation of cytoskeleton by myelin components: Studies on Shiverer oligodendrocytes carrying an MBP transgene, Dev Neurosci 19, 395-409 (1997).

    PubMed  CAS  Google Scholar 

  88. Bansal R, Warrington AE, Gard AL, Ranscht B, Pfeiffer SE, Multiple and novel specificities of monoclonal Abs 01, 04, and R-mAb used in the analysis of oligodendrocyte development, J Neurosci Res 24, 548-57 (1989).

    Article  PubMed  CAS  Google Scholar 

  89. Bansal R, Winkler S, Bheddah S, Negative regulation of oligo-dendrocyte differentiation by galactosphingolipids, J Neurosci 19, 7913-24 (1999).

    PubMed  CAS  Google Scholar 

  90. Ranscht B, Wood PM, Bunge RP, Inhibition of in vitroperiph-eral myelin formation by monoclonal anti-galactocerebroside, J Neurosci 7, 2936-47 (1987).

    PubMed  CAS  Google Scholar 

  91. Boggs JM, Wang H, Effect of liposomes containing cerebroside and cerebroside sulfate on cytoskeleton of cultured oligodendro-cytes, J Neurosci Res 66, 242-53 (2001).

    Article  PubMed  CAS  Google Scholar 

  92. Boggs JM, Wang H, Co-clustering of galactosylceramide and membrane proteins in oligodendrocyte membranes on interac-tion with polyvalent carbohydrate and prevention by an intact cytoskeleton, J Neurosci Res 76, 342-55 (2004).

    Article  PubMed  CAS  Google Scholar 

  93. Alving CR, Richards RL, Immune reactivities of antibodies against glycolipids. I. Properties of anti-galactocerebroside anti-bodies purified by a novel technique of affinity binding to liposomes, Immunochemistry 14, 373-81 (1977).

    Article  PubMed  CAS  Google Scholar 

  94. Yoshino T, Watanabe K, Hakomori S, Chemical synthesis of á-fucopyranosylceramide and its analogues and preparation of antibodies directed to this glycolipid, Biochemistry 21, 928-34 (1982).

    Article  PubMed  CAS  Google Scholar 

  95. Utsumi H, Suzuki T, Inoue K, Nojima S, Haptenic activity of galactosyl ceramide and its topographical distribution in liposo-mal membranes, Effects of temperature and phospholipid com-position, J Biochem 96, 97-105 (1984).

    PubMed  CAS  Google Scholar 

  96. Crook SJ, Boggs JM, Vistnes AI, Koshy KM, Factors affecting surface expression of glycolipids: Influence of lipid environment and ceramide composition on antibody recognition of cerebroside sulfate in liposomes, Biochemistry 25, 7488-94 (1986).

    Article  PubMed  CAS  Google Scholar 

  97. Stewart RJ, Boggs JM,Exposure of galactosylceramide to galactose oxidase in liposomes: Dependence on lipid environment and ceramide composition, Biochemistry 32,5605-14 (1993).

    Article  PubMed  CAS  Google Scholar 

  98. Kannagi R, Nudelman E, Hakomori S, Possible role of ceramide in defining structure and function of membrane glycolipids, Proc Natl Acad Sci USA 79, 3470-4 (1982).

    Article  PubMed  CAS  Google Scholar 

  99. Nudelman E, Hakomori S, Kannagi R, Levery S, Yeh M-Y, Hellstrom KE, Hellstrom I, Characterization of a human melanoma-associated ganglioside antigen defined by a mono-clonal antibody, J Biol Chem 257, 12752-6 (1982).

    PubMed  CAS  Google Scholar 

  100. Silvius JR, Fluorescence energy transfer reveals microdomain formation at physiological temperatures in lipid mixtures mod-eling the outer leaflet of the plasma membrane, Biophys J 85, 1034-45 (2003).

    Article  PubMed  CAS  Google Scholar 

  101. Gardam M, Silvius JR, Intermixing of dipalmitoylphosphatidyl-choline with phospho-and sphingolipids bearing highly asym-metric hydrocarbon chains, Biochim Biophys Acta 980, 319-25 (1989).

    Article  PubMed  CAS  Google Scholar 

  102. Boggs JM, Lipid intermolecular hydrogen bonding: Influence on structural organization and membrane function, Biochim Biophys Acta 906, 353-404 (1987).

    PubMed  CAS  Google Scholar 

  103. Brodsky RA, Mukhina GL, Li S, Nelson KL, Chiurazzi PL, Buckley JT, Borowitz MJ, Improved detection and characteriza-tion of paroxysmal nocturnal hemoglobinuria using fluorescent aerolysin, Am J Clin Pathol 114, 459-66 (2000).

    PubMed  CAS  Google Scholar 

  104. Boggs JM, Koshy, KM, Do the long fatty acid chains of sphin-golipids interdigitate across the center of a bilayer of shorter chain symmetric phospholipids? Biochim Biophys Acta 1189, 233-41 (1994).

    Article  PubMed  CAS  Google Scholar 

  105. Stewart RJ, Surface expression of glycolipids: Effect of mem-brane environment and glycolipid ceramide structure, Ph.D. The-sis, University of Toronto (1993).

  106. Cerny J, Stockinger H, Horejsi V, Noncovalent associations of T lymphocyte surface proteins, Eur J Immunol 26,2335-43 (1996).

    PubMed  CAS  Google Scholar 

  107. Madore N, Smith KL, Graham CH, Jen A, Brady K, Hall S, Morris R, Functionally different GPI proteins are organized in different domains on the neuronal surface, EMBO J 18, 6917-22 (1999).

    Article  PubMed  CAS  Google Scholar 

  108. Roper K, Corbeil D, Huttner WB, Retention of prominin in mi-crovilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane, Nat Cell Biol 2, 582-92 (2000).

    Article  PubMed  CAS  Google Scholar 

  109. Claas C, Stipp CS, Hemler ME, Evaluation of prototype trans-membrane 4 superfamily protein complexes and their relation to lipid rafts, J Biol Chem 276, 7974-84 (2001).

    Article  PubMed  CAS  Google Scholar 

  110. Taylor CM, Coetzee T, Pfeiffer SE, Detergent-insoluble gly-cosphingolipid/ cholesterol microdomains of the myelin mem-brane, J Neurochem 81, 993-1004 (2002).

    Article  PubMed  CAS  Google Scholar 

  111. Pereyra PM, Horvath E, Braun PE, Triton X-100 extractions of central nervous system myelin indicate a possible role for the minor myelin proteins in the stability in lamellae, Neurochem Res 13, 583-95 (1988).

    Article  PubMed  CAS  Google Scholar 

  112. Arvanitis DN, Yang W, Boggs JM, Myelin proteolipid protein, ba-sic protein, the small isoform of myelin-associated glycoprotein, and p42MAPK are associated in the TX-100 extract of central nervous system myelin, J Neurosci Res 70, 8-23 (2002).

    Article  PubMed  CAS  Google Scholar 

  113. Kim T, Pfeiffer SE, Myelin glycosphingolipid/cholesterol-enriched microdomains selectively sequester the non-compact myelin proteins CNP and MOG, J Neurocytol 28, 281-93 (1999).

    Article  PubMed  Google Scholar 

  114. Marta CB, Taylor CM, Coetzee T, Kim T, Winkler S, Bansal R, Pfeiffer SE, Antibody cross-linking of myelin oligoden-drocyte glycoprotein leads to its rapid repartitioning into.110 Boggs et al.detergent-insoluble fractions, and altered protein phosphoryla-tion and cell morphology, J Neurosci 23, 5461-71 (2003).

    PubMed  CAS  Google Scholar 

  115. Vinson M, Rausch O, Maycox PR, Prinjha RK, Chapman D, Morrow R, Harper AJ, Dingwall C, Walsh FS, Burbidge SA, Riddell DR, Lipid rafts mediate the interaction between myelin-associated glycoprotein (MAG) on myelin and MAG-receptors on neurons, Mol Cell Neurosci 22, 344-52 (2003).

    Article  PubMed  CAS  Google Scholar 

  116. Bohuslav J, Horejsi V, Hansmann C, Stockl J, Weidle UH, Majdic O, Bartke I, Knapp W, Stockinger H, Urokinase plasminogen activator receptor, â 2-integrins, and Src-kinases within a single receptor complex of human monocytes, J Exp Med 181, 1381-90 (1995).

    Article  PubMed  CAS  Google Scholar 

  117. Drobnik W, Borsukova H, Bottcher A, Pfeiffer A, Liebisch G, Schutz GJ, Schindler H, Schmitz G, ApoA1/ABCA1-dependent and HDL3-mediated lipid efflux from compositionally distinct cholesterol-based microdomains, Traffic 3, 268-78 (2002).

    Article  PubMed  Google Scholar 

  118. Maxfield FR, Plasma membrane microdomains, Curr Opin Cell Biol 14, 483-7 (2002).

    Article  PubMed  CAS  Google Scholar 

  119. Gomez-Mouton C, Abad JL, Mira E, Lacalle RA, Gallardo E, Jimenez-Baranda S, Illa I, Bernad A, Manes S, Martinez-A C, Segregation of leading edge and uropod components into specific lipid rafts during T cell polarization, Proc Natl Acad Sci USA 98, 9642-7 (2001).

    Article  PubMed  CAS  Google Scholar 

  120. Chigorno V, Palestini P, Sciannamblo M, Dolo V, Pavan A, Tettamanti G, Sonnino S, Evidence that ganglioside enriched do-mains are distinct from caveolae in MDCK II and human fibrob-last cells in culture, Eur J Biochem 267, 4187-97 (2000).

    Article  PubMed  CAS  Google Scholar 

  121. Vyas KA, Patel HV, Vyas AA, Schnaar RL, Segregation of gan-gliosides GM1 and GD3 on cell membranes, isolated membrane rafts, and defined supported lipid monolayers, Biol Chem 382, 241-50 (2001).

    Article  PubMed  CAS  Google Scholar 

  122. Solomon KR, Mallory MA, Finberg RW, Determination of the non-ionic detergent insolubility and phosphoprotein associations of glycosylphosphatidylinositol-anchored proteins expressed on T cells, Biochem J 334(pt 2), 325-33 (1998).

    PubMed  CAS  Google Scholar 

  123. Wang J, Gunning W, Kelley KMM, Ratnam M, Evidence for segregation of heterologous GPI-anchored proteins into separate lipid rafts within the plasma membrane, J Membr Biol 189, 35-43 (2002).

    Article  PubMed  CAS  Google Scholar 

  124. Umemori H, Sato S, Yagi T, Alzawa S, Yamamoto T, Initial events of myelination involve Fyn tyrosine kinase signalling, Nature 367, 572-6 (1994).

    Article  PubMed  CAS  Google Scholar 

  125. Dyer CA, Benjamins JA, Organization of oligodendroglial mem-brane sheets. I: Association of MBP and CNPase with cytoskeleton, J Neurosci Res 24, 201-11 (1989).

    Article  PubMed  CAS  Google Scholar 

  126. Oliferenko S, Paiha K, Harder T, Gerke V, Schwarzler C, Schwarz H, Beug H, Gunthert U, Huber LA, Analysis of CD44-containing lipid rafts: Recruitment of annexin II and stabilization by the actin cytoskeleton, J Cell Biol 146, 843-54 (1999).

    Article  PubMed  CAS  Google Scholar 

  127. Kusumi A, Sako Y, Cell surface organization by the membrane skeleton, Curr Opin Cell Biol 8, 566-74 (1996).

    Article  PubMed  CAS  Google Scholar 

  128. Kusumi A, Suzuki K, Koyasako K, Mobility and cytoskeletal interactions of cell adhesion receptors, Curr Opin Cell Biol 11, 582-90 (1999).

    Article  PubMed  CAS  Google Scholar 

  129. Tomishige M, Sako Y, Kusumi A, Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton, J Cell Biol 142,989-1000 (1998).

    Article  PubMed  CAS  Google Scholar 

  130. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A, Phospholipids undergo hop diffusion in compartmentalized cell membrane, J Cell Biol 157, 1071-81 (2002).

    Article  PubMed  CAS  Google Scholar 

  131. Tiemeyer M, Swank-Hill P, Schnaar RL, A membrane receptor for gangliosides is associated with CNS myelin, J Biol Chem 265, 11990-9 (1990).

    PubMed  CAS  Google Scholar 

  132. Badache A, Burger D, Villarroya H, Robert Y, Kuchler S, Steck AJ, Zanetta J-P, Carbohydrate moieties of myelin-associated glycoprotein, major glycoprotein of the peripheral nervous system myelin and other myelin glycoproteins poten-tially involved in cell adhesion, Develop Neurosci 14, 342-50 (1992).

    CAS  Google Scholar 

  133. Schmidt-Schultz T, Althaus HH, MGDG, a marker for myelina-tion, activates oligodendroglial protein kinase C, J Neurochem 62, 1578-85 (1994).

    Article  PubMed  CAS  Google Scholar 

  134. Richter-Landsberg C, The oligodendroglia cytoskeleton in health and disease, J Neurosci Res 59, 11-8 (2000).

    Article  PubMed  CAS  Google Scholar 

  135. Moorman SJ, Hume RL, Contact with myelin evokes a release of calcium from internal stores in neonatal rat oligodendrocytes in vitro, Glia 10, 202-10 (1994).

    Article  PubMed  CAS  Google Scholar 

  136. Moorman SJ, The inhibition of motility that results from contact between two oligodendrocytes in vitrocan be blocked by pertussis toxin, Glia 16, 257-65 (1996).

    Article  PubMed  CAS  Google Scholar 

  137. Witt A, Brady ST, Unwrapping new layers of complexity in axon/glial relationships, Glia 29, 112-7 (2000).

    Article  PubMed  CAS  Google Scholar 

  138. Stecca B, Southwood CM, Gragerov A, Kelley KA, Friedrich VL, Jr., GowA, The evolution of lipophilin genes from invertebrates to tetrapods: DM-20 cannot replace PLP in CNS myelin, J Neurosci 20, 4002-10 (2000).

    PubMed  CAS  Google Scholar 

  139. Baba H, Akita H, Ishibashi T, Inoue Y, Nakahira K, Ikenaka K, Completion of myelin compaction, but not the attachment of oligodendroglial processes triggers K channel clustering, J Neurosci Res 58, 752-64 (1999).

    Article  PubMed  CAS  Google Scholar 

  140. Murray N and Steck AJ, Impulse conduction regulates myelin basic protein phosphorylation in rat optic nerve,J Neurochem 43, 243-8 (1984).

    PubMed  CAS  Google Scholar 

  141. Atkins CM, Sweatt JD, Reactive oxygen species mediate activity-dependent neuron-glia signaling in output fibers of the hippocam-pus, J Neurosci 19, 7241-8 (1999).

    PubMed  CAS  Google Scholar 

  142. Chakraborty G, Drivas A, Ledeen R, The phosphoinositide sig-naling cycle in myelin requires cooperative interaction with the axon, Neurochem Res 24, 249-54 (1999).

    Article  PubMed  CAS  Google Scholar 

  143. Chakraborty G, Mekala P, Yahya D, Wu G, Ledeen RW, Intraneu-ronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: Evidence for myelin-associated aspartoacylase, J Neu-rochem 78, 736-45 (2001).

    CAS  Google Scholar 

  144. Ledeen RW, Golly F, Haley JE, Axon-myelin transfer of glycerol-labeled lipids and inorganic phosphate during axonal transport, Brain Res 269, 267-75 (1992).

    Article  Google Scholar 

  145. Mugnaini E, Osen KK, Schnapp B, Friedrich, Jr., VL, Distri-bution of Schwann cell cytoplasm and plasmalemmal vesicles (caveolae) in peripheral myelin sheaths. An electron microscopic study with thin sections and freeze-fracturing, J Neurocytol 6, 647-68 (1977).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boggs, J.M., Wang, H., Gao, W. et al. A glycosynapse in myelin?. Glycoconj J 21, 97–110 (2004). https://doi.org/10.1023/B:GLYC.0000044842.34958.f8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000044842.34958.f8

Navigation