Skip to main content
Log in

Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The effects of 24-epibrassinolide (24-epiBL) on seedling growth, antioxidative system, lipid peroxidation, proline and soluble protein content were investigated in seedlings of the salt-sensitive rice cultivar IR-28. Seedling growth of rice plants was improved by 24-epiBL treatment under salt stress conditions. When seedlings treated with 24-epiBL were subjected to 120 mM NaCl stress, the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) and glutathione reductase (EC 1.6.4.2) did not show significant difference, whereas the activity of ascorbate peroxidase (EC 1.11.1.11) significantly increased. Increased activity of peroxidase (EC 1.11.1.7) under NaCl stress showed remarkable decrease in the 24-epiBL+NaCl-applied group. Lipid peroxidation level significantly increased under salt stress but decreased with 24-epiBL application revealing that less oxidative damage occurred in this group (24-epiBL+NaCl). In addition, increased proline content in the NaCl-applied group was decreased by 24-epiBL application in the 24-epiBL+NaCl-applied group. Soluble protein content was increased by 24-epiBL application even under NaCl stress, being also higher than control conditions (no 24-epiBL or NaCl treatment). 24-epiBL treatment considerably alleviated oxidative damage that occurred under NaCl-stressed conditions and improved seedling growth in part under salt stress in sensitive IR-28 seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acar O., Türkan I. and Özdemir F. 2001. Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgare L.) varieties. Acta Physiol. Plant. 23(3): 351–356.

    CAS  Google Scholar 

  • Anuradha S. and Rao S.S.R. 2003. Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regul. 40: 29–32.

    Article  CAS  Google Scholar 

  • Aono M., Saji H., Fujiyama K., Sugita M., Kondo N. and Tanaka K. 1995. Decrease in activity of glutathione reductase enhances paraquat sensitivity in transgenic Nicotiana tabacum. Plant Physiol. 107: 645–648.

    CAS  PubMed  Google Scholar 

  • Bajguz A. 2000a. Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiol. Biochem. 38(3): 209–215.

    Article  CAS  Google Scholar 

  • Bajguz A. 2000b. Blockade of heavy metals accumulation in Chlorella vulgariscells by 24-epibrassinolide. Plant Physiol. Biochem. 38: 797–801.

    CAS  Google Scholar 

  • Bates L.S., Waldren R.P. and Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205–207.

    Article  CAS  Google Scholar 

  • Beauchamp C.O. and Fridovich I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276–287.

    Article  CAS  PubMed  Google Scholar 

  • Bergmeyer N. 1970. Methoden der enzymatischen Analyse, vol. 1, Akademie Verlag, Berlin, pp. 636–647.

    Google Scholar 

  • Bor M., Özdemir F. and Türkan I. 2003. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritimaL. Plant Sci. 164: 77–84.

    Article  CAS  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Clouse S.D., Langford M., Hall A.F., McMorris T.C. and Baker M.E. 1993. Physiological and molecular effects of brassinosteroids on Arabidopsis thaliana. J. Plant Growth Regul. 12: 61–66.

    Article  CAS  Google Scholar 

  • Dhaubhadel S., Chaudhary S., Dobinson K.F. and Krishna P. 1999. Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napusand tomato seedlings. Plant Mol. Biol. 40: 333–342.

    Article  CAS  PubMed  Google Scholar 

  • Dionisio-Sese M.L. and Tobita S. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135: 1–9.

    Article  CAS  Google Scholar 

  • Foyer C.H. and Halliwell B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133: 21–25.

    Article  Google Scholar 

  • Fujioka S. 1999. Natural occurrence of brassinosteroids in the plant kingdom. In: Sakurai A., Yokota T. and Clouse S.D. (eds), Brassinosteroids: Steroidal Plant Hormones, Springer-Verlag, Tokyo, pp. 21–45.

    Google Scholar 

  • Fujioka S. and Sakurai A. 1997. Brassinosteroids. Nat. Prod. Rep. 14: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Grove M.D., Spencer G.F., Rohwedder W.K., Mandava N.B., Worley J.F., Warthen J.D., Steffens G.L., Flippen-Anderson J.L. and Cook J.C. 1979. Brassinolide, a plant growthpromoting steroid isolated from Brassica napuspollen. Nature 281: 216–217.

    Article  CAS  Google Scholar 

  • Hasegawa P.M., Bressan R.A., Zhu J.K. and Bohnert H.J. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463–499.

    Article  CAS  PubMed  Google Scholar 

  • Hernández J.A., Jiménez A., Mullineaux P. and Sevilla F. 2000. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ. 23: 853–862.

    Google Scholar 

  • Herzog V. and Fahimi H. 1973. Determination of the activity of peroxidase. Anal. Biochem. 55: 554–562.

    Article  CAS  PubMed  Google Scholar 

  • Jain M., Mathur G., Koul S. and Sarin N.B. 2001. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogea L.). Plant Cell Rep. 20: 463–468.

    CAS  Google Scholar 

  • Li J.M., Nagpal P., Vitart V., Mc Morris T.C. and Chory J. 1996. A role for brassinosteroids in light dependent development of Arabidopsis. Science 272: 398–401.

    CAS  PubMed  Google Scholar 

  • Li L. and Van Staden J. 1998. Effects of plant growth regulators on drought resistance of two maize cultivars. S. Afr. J. Bot. 64(2): 116–120.

    CAS  Google Scholar 

  • Li L., Van Staden J. and Jäger A.K. 1998. Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. Plant Growth Reg. 25: 81–87.

    CAS  Google Scholar 

  • Lin J.N. and Kao C.H. 1998. Effect of oxidative stress caused by hydrogen peroxide on senescence of rice leaves. Bot. Bull. Acad. Sin. 39: 161–165.

    CAS  Google Scholar 

  • Madhava Rao K.V. and Sresty T.V.S. 2000. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci. 157: 113–128.

    Article  CAS  PubMed  Google Scholar 

  • Mandava N.B. 1988. Plant growth-promoting brassinosteroids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 23–52.

    Article  CAS  Google Scholar 

  • McCord J.M. 2000. The evolution of free radicals and oxidative stress. Am. J. Med. 108: 652–659.

    Article  CAS  PubMed  Google Scholar 

  • Mittal R. and Dubey R.S. 1991. Behaviour of peroxidases in rice: changes in enzyme activity and isoforms in relation to salt tolerance. Plant Physiol. Biochem. 29(1): 31–40.

    CAS  Google Scholar 

  • Nakano Y. and Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-spesific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22(5): 867–880.

    CAS  Google Scholar 

  • Noctor G. and Foyer C.H. 1998. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 249–279.

    Article  CAS  PubMed  Google Scholar 

  • Nomura T., Nakayama N., Reid J.B., Takeuchi Y. and Yokota T. 1997. Blockage of brassinosteroid biosynthesis and sensitivity cause dwarfism in Pisum sativum. Plant Physiol. 113: 31–37.

    CAS  PubMed  Google Scholar 

  • Sasse J.M. 1997. Recent progress in brassinosteroid research. Physiol. Plant. 100: 696–701.

    Article  CAS  Google Scholar 

  • Sasse J.M. 1999. Physiological actions of brassinosteroids. In: Sakurai A., Yokota T. and Clouse S.D. (eds), Brassinosteroids: Steroidal plant hormones, Springer-Verlag, Tokyo, pp. 137–161.

    Google Scholar 

  • Sasse J.M., Smith R. and Hudson I. 1995. Effects of 24-epibrassinolide on germination of seed of Eucalyptus camaldulensisin saline conditions. Proc. Plant Growth Regul. Soc. Amer. 22: 136–141.

    Google Scholar 

  • Schumacher K. and Chory J. 2000. Brassinosteroid signal transduction: still casting the actors. Curr. Opin. Plant Biol. 3: 79–84.

    Article  CAS  PubMed  Google Scholar 

  • Singha S. and Choudhuri M.A. 1990. Effect of salinity (NaCl) stress on H2O2 metabolism in Vigna and Oryza seedlings. Biochem. Physiol. Pflanzen 186: 69–74.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmail Türkan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özdemir, F., Bor, M., Demiral, T. et al. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regulation 42, 203–211 (2004). https://doi.org/10.1023/B:GROW.0000026509.25995.13

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GROW.0000026509.25995.13

Navigation