Skip to main content
Log in

Species richness and beta diversity of aquatic macrophytes in a large subtropical reservoir (Itaipu Reservoir, Brazil): the influence of limnology and morphometry

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Assessment of the environmental factors that control species richness (S) is a central issue in ecology. In this study, aquatic macrophyte S was estimated in 235 sampling sites distributed in 8 arms of a large (1350 km2) subtropical reservoir (Itaipu Reservoir, Brazil). Morphometric variables (area, shoreline development and length of shoreline, all measured for each arm; n= 8) and environmental variables measured at each sampling site (extinction coefficient of light (k), electrical conductivity, fetch, distance from the main reservoir body; n = 235) were used to predict aquatic macrophyte S at two spatial scales. At arm scale, linear regression analysis indicated that length of shoreline was a better predictor of S than area. At sampling site scale, multiple regression analysis indicated that S was significantly predicted by electrical conductivity, fetch and distance from the main body. However, other relationships with predictive interest was demonstrated by using non-traditional regression approaches. This analysis started by the visual inspection of scatter plots. The bivariate relationship between S and fetch, for example, showed an envelope or a `left triangle' pattern. The relationship between the number of submerged species and k showed an asymmetrical left triangle pattern. Using randomization procedures, it was demonstrated that these patterns were not generated by chance alone. Beta diversity (estimated within the arms) was significantly and positively correlated with spatial environmental variability. Overall, these results indicate that the prediction of aquatic macrophytes assemblage variables in large waterbodies, specially S, is more complex than previous studies have suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agostinho, A. A., A. E. A. Vazzoler & S. M. Thomaz, 1995. The High Paraná River Paraná basin: limnological and ichthyological aspects. In Tundisi, J. G. C. E. M. Bicudo & T. Matsumura-Tundisi (eds), Limnology in Brazil. Brazilian Academy of Science/Brazilian Society of Limnology, Rio de Janeiro: 59–104.

    Google Scholar 

  • Agostinho, A. A., L. E. Miranda, L. M. Bini, L. C. Gomes, S. M. Thomaz & H. I. Suzuki, 1999. Patterns of colonization in neotropical reservoirs, and prognosis on aging. In Tundisi J. G. & M. Stra¢skraba (eds), Theoretical Reservoir Ecology and its Applications. International Institute of Ecology/Brazilian Academy of Sciences/Backhuys Publishers, São Carlos: 227–265.

    Google Scholar 

  • Agostinho, A. A. & L. C. Gomes, 1997. Manejo e monitoramento de recursos pesqueiros: perspectivas para o reservatório de Segredo. In Agostinho A. A. & L. C. Gomes (eds), Reservatório de Segredo: Bases Ecológicas Para o Manejo. Eduem, Maringá: 319–264.

  • Amoros, C. & G. Bornette, 1999. Antagonistic and cumulative effects of connectivity: a predictive model based on aquatic vegetation in riverine wetlands. Arch. Hydrobiol. 3: 311–327.

    Google Scholar 

  • Bini, L. M., S. M. Thomaz, K. J. Murphy & A. F. M. Camargo, 1999. Aquatic macrophyte distribution in relation to water and sediment conditions in the Itaipu Reservoir, Brazil. Hydrobiologia 415: 147–154.

    Google Scholar 

  • Bini, L. M., S. M. Thomaz & D. C. Souza, 2001. Species richness and â-diversity of aquatic macrophytes in the Upper Paraná River floodplain. Arch. Hydrobiol. 151: 511–525.

    Google Scholar 

  • Blackburn, T. M. & K. J. Gaston, 1996. The distribution of bird species in the New World: patterns in species turnover. Oikos 77: 146–152.

    Google Scholar 

  • Bornette, G., H. Piegay, A. Citterio, C. Amoros & V. Godreau, 2001. Aquatic plant diversity in four river floodplains: a comparison at two hierarchical levels. Biodivers. Conserv. 10: 1683–1701.

    Google Scholar 

  • Brown, J. H, 1995. Macroecology. University of Chicago Press, Chicago, pp.

    Google Scholar 

  • Chambers, P. A., 1987. Nearshore occurrence of submersed aquatic macrophytes in relation to wave action. Can. J. Fish. aquat. Sci 44: 1666–1669.

    Google Scholar 

  • Coops, H., R. Boeters & H. Smit, 1991. Direct and indirect effects of wave attack on helophytes. Aquat. Bot. 41: 333–352.

    Google Scholar 

  • Coops, H. & R.W. Doef, 1996. Submerged vegetation development in two shallow, eutrophic lakes. Hydrobiologia 340: 115–120.

    Google Scholar 

  • Duarte, C. M. & J. Kalff, 1986. Littoral slope as a predictor of the maximum biomass of submerged macrophyte communities. Limnol. Oceanogr. 31: 1072–1080.

    Google Scholar 

  • Duarte, C. E., 1990. Variance and the description of nature. In Cole J. J., G. Lovet & S. Findlay (eds), Comparative Analyses of Ecosystems: Patterns, Mechanisms, and Theories. Springer Verlag, New York: 301–318.

    Google Scholar 

  • Duarte, C. M., J. Kalff & R. H. Peters, 1986. Patterns in biomass and cover of aquatic macrophytes in lakes. Can. J. Fish. aquat. Sci. 43: 1900–1908.

    Google Scholar 

  • Esteves, F. A. & R. Barbieri, 1983. Dry weight and chemical changes during decomposition of tropical macrophytes in Lobo Reservoir – Sáo Paulo, Brazil. Aquat. Bot. 16: 285–295.

    Google Scholar 

  • Engelhardt, K. A. M. & M. E. Ritchie, 2001. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411: 687–689.

    Google Scholar 

  • Gasith, A. & M. V. Hoyer, 1998. Structuring role of macrophytes in lakes: changing influence along lake size and depth gradients. In Jeppesen E., M. Søndergaard & K. Christoffersen (eds), The Structuring Role of SubmergedMacrophytes in Lakes. Ecological Studies, vol. 131. Springer, New York: 381–392.

    Google Scholar 

  • Goldberg, D. E. & S. M. Scheiner, 1993. ANOVA and ANCOVA: Field competition experiments. In Scheiner S. M. & J. Gurevitch (eds), The Design and Analysis of Ecological Experiments. Chapman & Hall, New York: 69–93.

    Google Scholar 

  • Gotelli, N. J. & G. L. Entsminger, 2000. EcoSim: Null models software for ecology. Version 5.0. Acquired Intelligence Inc. & Kesey-Bear. http://homepages.together.net/gentsmi n/ecosim.htm.

  • Håkanson, L. & M. Jansson, 1983. Principles of lake sedimentology. Springer-Verlag, Berlin. 316 pp.

    Google Scholar 

  • Harrison, S., S. J. Ross & J. H. Lawton, 1992. Beta diversity on geographic gradients in Britain. J. anim. Ecol. 61: 151–158.

    Google Scholar 

  • Heegaard, E., H. H. Birks, C. E. Gibson, S. J. Smith & S. Wolfe-Murphy, 2001. Species-environmental relationships of aquatic macrophytes in Northern Ireland. Aquat. Bot. 70: 175–223.

    Google Scholar 

  • Henderson, H. V. & P. F. Velleman., 1981. Building multipleregression models interactively. Biometrics 37: 391–411.

    Google Scholar 

  • Hudon, C., S. Lalonde & P. Gagnon, 2000. Ranking the effects of site exposure, plant growth form, water depth, and transparency on aquatic plant biomass. Can. J. Fish. aquat. Sci. 57: 31–42.

    Google Scholar 

  • Jacobsen, D. & E. Terneus, 2001. Aquatic macrophytes in cool aseasonal and seasonal streams: a comparison betweenEcuadorian highland and Danish lowland streams. Aquat. Bot. 71: 281–295.

    Google Scholar 

  • Jackson, S. T. & D. F. Charles, 1988. Aquatic macrophytes in Adirondack (New York) lakes: patterns of species composition in relation to environment. Can. J. Bot. 66: 1449–1460.

    Google Scholar 

  • Kimmel, B. L., O. T. Lind & L. J. Paulson, 1990. Reservoir Primary Production. In Thornton K. W., B. L. Kimmel & F.E. Payne (eds), Reservoir Limnology: Ecological Perspectives. John Wiley & Sons, New York: 133–194.

    Google Scholar 

  • Lougheed, V. L., B. Crosbie & P. Chow-Fraser, 2001. Primary determinants of macrophyte community structure in 62 marshes across the Great Lakes basin: latitude, land use, and water quality effects. Can. J. Fish. aquat. Sci. 58: 1603–1612.

    Google Scholar 

  • Manly, B. F. J., 1991. Randomization and Monte Carlo Methods in Biology. Chapman and Hall, London. 281 pp.

    Google Scholar 

  • Martínez, J. C. C., A. Canesin & C. C. Bonecker, 2000. Species composition of rotifers in different habitats of an artificial lake, Mato Grosso do Sul State, Brazil. Acta Scientiarum 22: 343–346.

    Google Scholar 

  • Moore, J. A., 1986. Charophytes of Great Britain and Ireland. Botanical Society of the British Islands, London. 141 pp.

    Google Scholar 

  • Murphy, K. J., B. Rørslett & I. S pringuel, 1990. Strategy analysis of submerged lake macrophyte communities: an international example. Aquat. Bot. 36: 303–323.

    Google Scholar 

  • Nilsson, C. & P. A. Keddy, 1988. Predictability of change in shoreline vegetation in a hydroelectric reservoir, Northern Sweden. Can. J. Fish. aquat. Sci. 45: 1896–1904.

    Google Scholar 

  • Rea, T. E., D. J. Karapatakis, K. K. Guy, J. E. Pinder III & H. E. Mackey Jr., 1998. The relative effects of water depth, fetch and other physical factors on the southeastern U.S. pond. Aquat. Bot. 61: 289–299.

    Google Scholar 

  • Robach, F., I. Eglin & M. Tremolieres, 1997. Species richness of aquatic macrophytes in former channels connected to a river: a comparison between two fluvial hydrosystems differing in their regime and regulation. Global Ecol. Biogeogr. 6: 267–274.

    Google Scholar 

  • Rørslett, B., 1991. Principal determinants of aquatic macrophyte richness in Northern European lakes. Aquat. Bot. 39: 173–193.

    Google Scholar 

  • Smart, R. M., R. D. Doyle & J. D. Madsen, 1996. Establishing native submersed aquatic plant communities for fish habitat. Am. Fish. Soc. Symp. 16: 347–356.

    Google Scholar 

  • Sand-Jensen, K., T. Riis, O. Vestergaard & S. E. Larsen, 2000. Macrophyte decline in Danish lakes and streams over the past 100 years. J. Ecol. 88: 1030–1040.

    Google Scholar 

  • Scheffer, M., M. R. Redelijkheid & F. Noppert, 1992. Distribution and dynamics of submerged vegetation in a chain of shallow eutrophic lakes. Aquat. Bot. 42: 199–216.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1981. Biometry. 2nd. Ed.W. H. Freeman and Company, New York. 859 pp.

    Google Scholar 

  • Thomaz, S. M., L. M. Bini & D. C. Souza, 1998. Biomass and maximum colonization depth of Egeria najas Planchon (Hydrocharitaceae) at Itaipu Reservoir, Brazil. In Monteiro A., T. Vasconcelos & L. Catarino (eds), Management and Ecology of Aquatic Plants. Proceedings of the 10th EWRS International Symposium on Aquatic Weeds. EWRS/APRH, Lisbon: 223–226.

    Google Scholar 

  • Thomaz, S. M. & L. M. Bini, 1999. A expansão das macrófitas aquáticas e implicações para o manejo de reservatórios: um estudo na represa de Itaipu. In Henry R. (ed), Ecologia de Reservatórios: Estrutura, Função e Aspectos Sociais. Fundibio, Botucatu: 599–625.

    Google Scholar 

  • Thomaz, S.M., L. M. Bini, M. C. Souza, K.K. Kita & A. F. M. Camargo, 1999. Aquatic macrophytes of Itaipu Reservoir, Brazil: Survey of species and ecological considerations. Brazil. archiv. biol. technol. 42: 15–22.

    Google Scholar 

  • Thornton, K. W., 1990. Sedimentary processes. In Thornton K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir Limnology: Ecological Perspectives. John Wiley & Sons, New York: 43–69.

    Google Scholar 

  • Tockner, K., F. Schiemer, C. Baumgartner, G. Kum, E. Weigand, I. Zweimuller & J. V. Ward, 1999. The Danube restoration project: Species diversity patterns across connectivity gradients in the floodplain system. Regul. Riv. 15: 245–258.

    Google Scholar 

  • Vestergaard, O. & K. Sand-Jensen, 2000a. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area. Can. J. Fish. aquat. Sci. 57: 2022–2031.

    Google Scholar 

  • Vestergaard, O. & K. Sand-Jensen, 2000b. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquat. Bot. 67: 85–107.

    Google Scholar 

  • Wall, D., H. Mooney, G. Adams, G. Boxshall, A. Dobson, T. Nakashizuka, J. Seyani, C. Samper & J. Sarukhan, 2001. An International Biodiversity Observation Year. Trends Ecol. Evol. 16: 52–54.

    Google Scholar 

  • Whittaker, R. H., 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.

    Google Scholar 

  • Willby, N. J., J. R. Pygott, & J. W. Eaton, 2001. Inter-relationship between standing crop, biodiversity and trait attributes of hydrophytic vegetation in artificial waterways. Freshwat. Biol. 46: 883–902.

    Google Scholar 

  • Wilson, M. V. & A. Shmida, 1984. Measuring beta diversity with presence-absence data. J. Ecol. 72: 1055–1064.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomaz, S.M., Souza, D.C. & Bini, L.M. Species richness and beta diversity of aquatic macrophytes in a large subtropical reservoir (Itaipu Reservoir, Brazil): the influence of limnology and morphometry. Hydrobiologia 505, 119–128 (2003). https://doi.org/10.1023/B:HYDR.0000007300.78143.e1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000007300.78143.e1

Navigation