Skip to main content
Log in

Conformal Invariance, Accelerating Universe and the Cosmological Constant Problem

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate a conformal invariant gravitational model which is taken to hold at early universe. The conformal invariance allows us to make a dynamical distinction between the two unit systems (or conformal frames) usually used in cosmology and elementary particle physics. In this model we argue that when the universe suffers phase transition, the resulting mass scale introduced by particle physics should have a variable contribution to vacuum energy density. This variation is controlled by the conformal factor which is taken as a dynamical field. We then deal with the cosmological consequences of this model. In particular, we shall show that there is an inationary phase at early times. At late times, on the other hand, it provides a mechanism which makes a large effective cosmological constant relax to a sufficiently small value. Moreover, we shall show that the conformal factor acts as a quintessence field that leads the universe to accelerate at late times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, L. (1985). Physics Letters 150B, 427.

    Google Scholar 

  • Albrecht, A. and Steinhardt, P. J. (1982) Physical Review Letters 48, 1220.

    Google Scholar 

  • Banks, T. (1985). Nuclear Physics B 249, 332.

    Google Scholar 

  • Barr, S. M. (1987). Physical Review D: Particles and Fields 36, 1691.

    Google Scholar 

  • Barr, S. M. and Hochberg, D. (1988). Physics Letters 211B, 49.

    Google Scholar 

  • Bekenstein, J. D. and Meisels, A. (1980). Physical Review D: Particles and Fields 22, 1313.

    Google Scholar 

  • Bisabr, Y. and Salehi, H. (2000). Classical and Quantum Gravity 19, 2369.

    Google Scholar 

  • Deser, S. (1970). Annals of Physics 59, 248.

    Google Scholar 

  • Dicke, R. H. (1962). Physical Review 125, 2163.

    Google Scholar 

  • Dolgov, A. D. (1983). The Very Early Universe. In G. W. Gibbons, S. W. Hawking, and S. T. C. Siklos, eds., Cambridge University Press, Cambridge.

    Google Scholar 

  • Ford, L. H. (1987). Physical Review D: Particles and Fields 35, 2339.

    Google Scholar 

  • Guth, A. H. (1981). Physical Review D: Particles and Fields 23, 347.

    Google Scholar 

  • Henneaux, M. and Teitelboim, C. (1984). Physics Letters 143B, 415.

    Google Scholar 

  • La, D. and Steinhardt, P. J. (1989). Physical Review Letters 62, 376.

    Google Scholar 

  • Linde, A. D. (1982). Physics Letters 108B, 389.

    Google Scholar 

  • Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation Freeman, San Francisco.

    Google Scholar 

  • Peccei, R. D., Sola, J., and Wetterich, C. (1987). Physics Letters 195B, 183.

    Google Scholar 

  • Salehi, H., and Bisabr, Y. (2000). International Journal of Theoretical Physics 39, 1241.

    Google Scholar 

  • Salehi, H., Bisabr, Y., and Ghafarnejad, H. (2000). Journal of Mathematical Physics 41, 4582.

    Google Scholar 

  • Suen, W. M., and Will, C. M. (1988). Physics Letters 205B, 447.

    Google Scholar 

  • Weinberg, S. (1972). Gravitation and Cosmology Wiley, New York.

    Google Scholar 

  • Weinberg, S. (1989). Review Modern Physics 61,1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisabr, Y. Conformal Invariance, Accelerating Universe and the Cosmological Constant Problem. International Journal of Theoretical Physics 43, 2137–2148 (2004). https://doi.org/10.1023/B:IJTP.0000049015.53901.55

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJTP.0000049015.53901.55

Navigation