Skip to main content
Log in

Synthesis, Structure, and Properties of New Hybrid Nanocomposites Containing the [Mo63-Cl)8]4+ Cluster

  • Published:
Inorganic Materials Aims and scope

Abstract

A new type of hybrid nanocomposite material is produced via consecutive outer-sphere transformations of a Mo-containing cluster. Cluster monomers with the general formula (Bu4N)2[(Mo6Cl8)(CF3COO)6 – n CH2=CHCOO n ] (n= 1–3) are synthesized and characterized for the first time. The bulk radical copolymerization of such monomers with acrylic acid is an interfacial process and leads to the formation of hybrid (metal-containing polymeric) nanocomposites. The synthesized copolymers (≃1–5 wt % Mo, M η ≃ 270000, 5–24 cluster units per polymer chain) are examined by nuclear magnetic resonance and IR spectroscopy. The results indicate that the copolymers contain stereoregular (syndiotactic) polyacrylic acid. The structure of the cluster-containing composites, the distribution of cluster units over the polymer chain, and the origin of stereoregularity in such systems are discussed. According to differential thermal analysis results, the introduction of clusters into the polymer chain has an insignificant effect on the thermal stability of the nanocomposites. The same is evidenced by the results on the molecular–topological properties of the nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Pomogailo, A.D., Vlasenko, V.G., Shuvaev, A.E., et al., Mechanism of Short-Range Ordering around Fe Atoms during [Fe3O(OOCCH=CHCOOH)6]OH · 3H2O Pyrolysis as the Initial Stage of Nanoparticle Nucleation in Metal-Polymer Systems, Kolloidn. Zh., 2002, vol. 64, no. 4, pp. 524-530.

    Google Scholar 

  2. Petrov, Yu.I., Klastery i malye chastitsy (Clusters and Small Clusters), Moscow: Nauka, 1986.

    Google Scholar 

  3. Di Nardo, N.J., Nanoscale Characterization of Surfaces and Interfaces, Weinheim: VCH, 1994.

    Google Scholar 

  4. Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metallic Nanoparticles in Polymers), Moscow: Khimiya, 2000.

    Google Scholar 

  5. Pomogailo, A.D. and Savost'yanov, V.S., Synthesis and Polymerization of Metal-Containing Monomers, Boca Raton: CRC, 1994.

    Google Scholar 

  6. Bravaya, N.M., Pomogailo, A.D., Maksakov, V.A., et al., Synthesis and Properties of Styrene-Acrylonitrile Copolymers Containing Triosmiumcarbonyl Monomers, Izv. Akad. Nauk, Ser. Khim., 1995, no. 6, p. 1102.

  7. Tunik, S.P., Pomogailo, S.I., Dzhardimalieva, G.I., et al., Synthesis and Molecular Structure of Vinylpyridine Derivatives of Rh6(CO)16, Izv. Akad. Nauk, Ser. Khim., 1993, no. 5, pp. 975-979.

  8. Opalovskii, A.A., Tychinskaya, I.I., Kuznetsova, Z.M., and Samoilov, P.P., Galogenidy molibdena (Molybdenum Halides), Novosibirsk: Nauka, 1972, p. 99.

    Google Scholar 

  9. Johnston, D.H., Gaswick, D.C., Lonergan, M.C., et al., Preparation of Bis(tetrabutylammonium)octa(?3-chloro)hexakis(trifluoromethanesulfonato)-octahedrohexamolybdate(2-), (Bu4N)2[Mo6Cli(CF3SO3)6]: A Versatile Starting Material for Substituted Mo(II) Clusters Containing the [Mo6Cl i8 ] Core, Inorg. Chem., 1992, vol. 31, no. 10, pp. 1869-1873.

    Google Scholar 

  10. Handbuch der präparativen anorganischen Chemie in drei Bänden, von Brauer, G., Ed., Stuttgart: Ferdinand Enke, 1975, 3rd ed. Translated under the title Rukovodstvo po neorganicheskomu sintezu, Moscow: Mir, 1985, vol. 4, p. 1100.

    Google Scholar 

  11. Lazarev, A.I., Organicheskie reaktivy v analize metallov (Organic Reagents for Metals Analysis), Moscow: Metallurgiya, 1980.

    Google Scholar 

  12. Copolymerization, Ham, G.E., Ed., New York: Wiley, 1967. Translated under the title Sopolimerizatsiya, Moscow: Khimiya, 1971.

    Google Scholar 

  13. Teitel'baum, M.I., Termomekhanicheskii analiz polimerov (Thermomechanical Analysis of Polymers), Moscow: Nauka, 1979.

    Google Scholar 

  14. Gubin, S.P., Khimiya klasterov: Osnovy klassifikatsii i stroenie (Chemistry of Clusters: Fundamentals of Classification and Structure), Moscow: Nauka, 1987.

    Google Scholar 

  15. Adamenko, O.A., Outer-Sphere Acrylate-Ligand Substitution in the [Mo6Cl8]4+ Cluster and Its Polymerization, Cand. Sci. (Chem.) Dissertation, Rostov-on-Don: Rostov State Univ., 2002.

    Google Scholar 

  16. Pomogailo, S.I., Dzhardimalieva, G.I., Ershova, V.A., et al., Synthesis and Properties of Rh6 and Os3-Cluster-Containing Monomers and Their Copolymers with Styrene, Macromol. Symp., 2002, vol. 186, pp. 155-160.

    Google Scholar 

  17. Pomogailo, S.I., Synthesis, Structure, Polymerization, and Catalytic Activity of Cluster-Containing Monomers, Cand. Sci. (Chem.) Dissertation, Chernogolovka: Inst. of Problems of Chemical Physics, Ross. Acad. Sci., 2003.

    Google Scholar 

  18. Selenova, B.S., Dzhardimalieva, G.I., Tsikalova, M.V., et al., Low-Temperature Radical Polymerization of Zn, Ba, Mg, and Pb Acrylates Initiated by Organocobalt Compounds, Izv. Akad. Nauk, Ser. Khim., 1993, no. 3, pp. 500-503.

  19. Chapiro, A., Goldfeld-Freilich, D., and Perichon, J., Influence de la température sur les associations moléculaires et sur la polymérization de l'acide acrylique en solution, Eur. Polym. J., 1975, vol. 11, no. 3, pp. 515-521.

    Google Scholar 

  20. Bravaya, N.M., Pomogailo, A.D., Maksakov, V.A., et al., Thermal Destruction of Poly(styrene) and Poly(acrylonitrile) Modified with Triosmiumcarbonyl Monomers, Izv. Akad. Nauk, Ser. Khim., 1994, no. 3, pp. 423-428.

  21. Christiano, S.P. and Pinnavaia, T.J., Intercalation in Montmorillonite of Molybdenum Cations Containing the Mo6Cl8 Cluster Core, J. Solid State Chem., 1986, vol. 64, no. 2, pp. 232-239.

    Google Scholar 

  22. Robinson, L.M., Lu, H., Hupp, J.T., and Shriver, D.F., Nature of the Interaction and Photophysical Properties of [Mo6Cl i8 (SO3CF3 ]2- and [Mo6Cl i8 Cl a6 ]2- on Silica Gel, Chem. Mater., 1995, vol. 7, no. 1, pp. 43-49.

    Google Scholar 

  23. Takamaizawa, S., Furihata, M., Takeda, S., et al., Synthesis and Characterization of Novel Inclusion Complexes between Microporous Molybdenum(II) Dicarboxylates and Organic Polymers, Macromolecules, 2000, vol. 33, no. 17, pp. 6222-6227.

    Google Scholar 

  24. Gorman, C.B., Su, W.Y., Jiang, H., et al., Hybrid Organic-Inorganic, Hexa-Arm Dendrimers Based on an Mo6Cl8 Core, Chem. Commun., 1999, no. 10, pp. 877-878.

  25. Prokopuk, N., Weinert, C.S., Siska, D.P., et al., Hydrogen-Bonded Hexamolybdenum Clusters: Formation of Inorganic-Organic Networks,Angew. Chem., 2000, vol. 39, no. 18, pp. 3312-3314.

    Google Scholar 

  26. Adamenko, O.A., Lukova, G.V., Golubeva, N.D., et al., Synthesis, Structure, and Physicochemical Properties of [Mo6Cl8]4+-Containing Clusters, Dokl. Akad. Nauk, 2001, vol. 381, no. 3, pp. 360-363.

    Google Scholar 

  27. Jackson, J.A., Newsham, M.D., Worsham, G., and Nocera, D.G., Efficient Singlet Oxygen Generation from Polymers Derivatized with Hexanuclear Molybdenum Clusters, Chem. Mater., 1996, vol. 8, no. 2, pp. 558-564.

    Google Scholar 

  28. Kepert, C.J., Kurmoo, M., and Day, P., Crystal Structures and Physical Properties of BEDT-TTF Charge Transfer Salts with (Mo6Cl8)X 2-6 Anions (BEDT-TTF = Bis(ethylenedithio) tetrathiafulvalene; X = Cl, Br), Proc. R. Soc. London, A, 1998, vol. 454, pp. 487-518.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golubeva, N.D., Adamenko, O.A., Boiko, G.N. et al. Synthesis, Structure, and Properties of New Hybrid Nanocomposites Containing the [Mo63-Cl)8]4+ Cluster. Inorganic Materials 40, 306–313 (2004). https://doi.org/10.1023/B:INMA.0000020534.96346.55

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INMA.0000020534.96346.55

Keywords

Navigation